\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Forward triplets and topological entropy on trees

  • * Corresponding author: David Juher

    * Corresponding author: David Juher 

Work supported by grants MTM2017-86795-C3-1-P and 2017 SGR 1617. Lluís Alsedà acknowledges financial support from the Spanish Ministerio de Economía y Competitividad grant number MDM-2014-0445 within the "María de Maeztu" excellence program

Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • We provide a new and very simple criterion of positive topological entropy for tree maps. We prove that a tree map $ f $ has positive entropy if and only if some iterate $ f^k $ has a periodic orbit with three aligned points consecutive in time, that is, a triplet $ (a,b,c) $ such that $ f^k(a) = b $, $ f^k(b) = c $ and $ b $ belongs to the interior of the unique interval connecting $ a $ and $ c $ (a forward triplet of $ f^k $). We also prove a new criterion of entropy zero for simplicial $ n $-periodic patterns $ P $ based on the non existence of forward triplets of $ f^k $ for any $ 1\le k<n $ inside $ P $. Finally, we study the set $ \mathcal{X}_n $ of all $ n $-periodic patterns $ P $ that have a forward triplet inside $ P $. For any $ n $, we define a pattern that attains the minimum entropy in $ \mathcal{X}_n $ and prove that this entropy is the unique real root in $ (1,\infty) $ of the polynomial $ x^n-2x-1 $.

    Mathematics Subject Classification: Primary: 37E15, 37E25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Two non-homeomorphic trees $ T $ and $ S $, with 9-periodic orbits $ P = \{x_i\}_{i = 1}^9 $ and $ Q = \{y_i\}_{i = 1}^9 $ of two respective (unspecified) tree maps $ {f}: {T} \longrightarrow {T} $ and $ {g}: {S} \longrightarrow {S} $

    Figure 2.  An interval model $ (T,P,f) $ and the corresponding pattern, that can be identified with the permutation $ (3,4,2,5,1) $

    Figure 3.  Two 8-periodic simplicial patterns $ \mathcal{P} $ and $ \mathcal{Q} $

    Figure 4.  A fully rotational 12-periodic pattern $ \mathcal{P} $

    Figure 5.  The pattern $ \mathcal{Q}_6 $

    Figure 6.  Two models of the same pattern

    Figure 7.  On the left, the canonical model $ (T,P,f) $ of a 6-periodic pattern $ \mathcal{P} $, for which $ f(y) = y $. On the right, the Markov graph of $ (T,P,f) $

    Figure 8.  The two possible arrangements of the connected components $ C_0,C_1,C_2 $ in the proof of Lemma 4.2. The black points belong to $ P $

    Figure 9.  Topological induction

    Figure 10.  A 15-periodic pattern with two discrete components and a $ \pi $-reduced 5-pattern

    Figure 11.  A 15-periodic pattern with two discrete components and a 3-division

    Figure 12.  Two possible sequences $ \mathcal{P}\ge\mathcal{Q}_1\ge\mathcal{Q}_2 $ and $ \mathcal{P}\ge\mathcal{R}_1\ge\mathcal{R}_2 $ of pull outs leading to two (different) complete openings of $ \mathcal{P} $ with respect to the forward triplet $ (4,5,6) $

  • [1] R. AdlerA. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.  doi: 10.1090/S0002-9947-1965-0175106-9.
    [2] L. AlsedàJ. GuaschiJ. LosF. Mañosas and P. Mumbrú, Canonical representatives for patterns of tree maps, Topology, 36 (1997), 1123-1153.  doi: 10.1016/S0040-9383(96)00039-0.
    [3] L. AlsedàD. Juher and F. Mañosas, Topological and algebraic reducibility for patterns on trees, Ergodic Theory Dynam. Systems, 35 (2015), 34-63.  doi: 10.1017/etds.2013.52.
    [4] L. AlsedàD. Juher and F. Mañosas, On the minimum positive entropy for cycles on trees, Tran. Amer. Math. Soc., 369 (2017), 187-221.  doi: 10.1090/tran6677.
    [5] L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, 2$^{nd}$ edition, Advanced Series in Nonlinear Dynamics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/4205.
    [6] L. Alsedà and X. Ye, No division and the set of periods for tree maps, Ergodic Theory Dynam. Systems, 15 (1995), 221-237.  doi: 10.1017/S0143385700008348.
    [7] S. Baldwin, Generalizations of a theorem of Sarkovskii on orbits of continuous real-valued functions, Discrete Math., 67 (1987), 111-127.  doi: 10.1016/0012-365X(87)90021-5.
    [8] F. BlanchardE. GlasnerS. Kolyada and A. Maas, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.  doi: 10.1515/crll.2002.053.
    [9] L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one-dimensional maps, Global Theory of Dynamical Systems, Lecture Notes in Math., Springer, Berlin, 819 (1980), 18–34.
    [10] A. Blokh, Trees with snowflakes and zero entropy maps, Topology, 33 (1994), 379-396.  doi: 10.1016/0040-9383(94)90019-1.
    [11] M. A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems for plane continua with applications, Mem. Amer. Math. Soc., 224 (2013), 97 pp. doi: 10.1090/S0065-9266-2012-00671-X.
    [12] T.-Y. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.  doi: 10.1080/00029890.1975.11994008.
    [13] J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps, Topology, 32 (1993), 649-664.  doi: 10.1016/0040-9383(93)90014-M.
    [14] M. Misiurewicz, Minor cycles for interval maps, Fund. Math., 145 (1994), 281-304.  doi: 10.4064/fm-145-3-281-304.
    [15] M. Misiurewicz and Z. Nitecki, Combinatorial patterns for maps of the interval, Mem. Amer. Math. Soc., 94 (1991), 112 pp. doi: 10.1090/memo/0456.
    [16] A. N. Sharkovsky, Co-existence of cycles of a continuous mapping of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.  doi: 10.1142/S0218127495000934.
    [17] P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys., 54 (1977), 237-248.  doi: 10.1007/BF01614086.
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(999) PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return