\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction

  • *Corresponding author

    *Corresponding author 

G.C. was partially supported by Padua University grant SID 2018 "Controllability, stabilizability and infimum gaps for control systems", prot. BIRD 187147, and by GNAMPA of INdAM. P.G. was partially supported by by the GAČR–FWF grant 19-29646L. E.V. was partially supported by ANID-Chile under grant Fondecyt de Iniciación N$ ^{\circ} $ 11180098

Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We study the asymptotic stability of periodic solutions for sweeping processes defined by a polyhedron with translationally moving faces. Previous results are improved by obtaining a stronger $ W^{1,2} $ convergence. Then we present an application to a model of crawling locomotion. Our stronger convergence allows us to prove the stabilization of the system to a running-periodic (or derivo-periodic, or relative-periodic) solution and the well-posedness of an average asymptotic velocity depending only on the gait adopted by the crawler. Finally, we discuss some examples of finite-time versus asymptotic-only convergence.

    Mathematics Subject Classification: Primary: 70K42, 34A60; Secondary: 34D45, 37C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The model of soft crawler

    Figure 2.  The orbit (red) of a solution $ z(t) $ of counterexample 5.2, converging only asymptotically to a constant solution $ \bar z $. The set $ C(t) $ is periodically sliding vertically. Notice that the solution will stop for progressively longer intervals at the edges of the orbit. The set $ \mathcal{Z} $ of periodic solutions is the set of constant functions with value in the light-gray triangle

    Figure 3.  The orbit (red) of a solution $ z(t) $ of counterexample 5.3, converging only asymptotically to a periodic solution

  • [1] J. Andres, Nonlinear rotations, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 495-503.  doi: 10.1016/S0362-546X(96)00208-8.
    [2] J. AndresD. Bednařík and K. Pastor, On the notion of derivo-periodicity, J. Math. Anal. Appl., 303 (2005), 405-417.  doi: 10.1016/j.jmaa.2004.08.020.
    [3] T. H. CaoG. ColomboB. S. Mordukhovich and D. Nguyen, Optimization of fully controlled sweeping processes, J. Differ. Eq., 295 (2021), 138-186.  doi: 10.1016/j.jde.2021.05.042.
    [4] G. Colombo and P. Gidoni, On the optimal control of rate-independent soft crawlers, J. Math. Pures Appl., 146 (2021), 127-157.  doi: 10.1016/j.matpur.2020.11.005.
    [5] G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications, (2010), 99–182.
    [6] J. Eldering and H. O. Jacobs, The role of symmetry and dissipation in biolocomotion, SIAM J. Appl. Dyn. Syst., 15 (2016), 24-59.  doi: 10.1137/140970914.
    [7] F. FassòS. Passarella and M. Zoppello, Control of locomotion systems and dynamics in relative periodic orbits, J. Geome. Mech., 12 (2020), 395-420.  doi: 10.3934/jgm.2020022.
    [8] P. Gidoni, Rate-independent soft crawlers, Quart. J. Mech. Appl. Math., 71 (2018), 369-409.  doi: 10.1093/qjmam/hby010.
    [9] P. Gidoni and A. DeSimone, Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler, Meccanica, 52 (2017), 587-601.  doi: 10.1007/s11012-016-0408-0.
    [10] P. Gidoni and A. DeSimone, On the genesis of directional friction through bristle-like mediating elements, ESAIM Control Optim. Calc. Var., 23 (2017), 1023-1046.  doi: 10.1051/cocv/2017030.
    [11] P. Gidoni and F. Riva, A vanishing inertia analysis for finite dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers, Calc. Var. Partial Differential Equations, 60 (2021), 54pp. doi: 10.1007/s00526-021-02067-6.
    [12] I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems, preprint, arXiv: 2011.07744.
    [13] I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity, ESAIM Control Optim. Calc. Var., 27 (2021), 43pp. doi: 10.1051/cocv/2020043.
    [14] I. Gudoshnikov, M. Kamenskii, O. Makarenkov and N. Voskovskaia., One-period stability analysis of polygonal sweeping processes with application to an elastoplastic model, Math. Model. Nat. Phenom., 15 (2020), 18pp. doi: 10.1051/mmnp/2019030.
    [15] D. G. E. Hobbelen and M. Wisse, Limit Cycle Walking, Humanoid Robots, Human-like Machines, edited by M. Hackel, I-Tech Education and Publishing, 2007.
    [16] S. D. Kelly and R. M. Murray, Geometric phases and robotic locomotion, Journal of Robotic Systems, 12 (1995), 417-431.  doi: 10.1002/rob.4620120607.
    [17] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996.
    [18] P. Krejčí and V. Recupero, BV solutions of rate independent differential inclusions, Math. Bohem., 139 (2014), 607-619.  doi: 10.21136/MB.2014.144138.
    [19] P. Krejčí and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions, Set-Valued Anal., 11 (2003), 91-110.  doi: 10.1023/A:1021980201718.
    [20] M. LeviF. C. Hoppensteadt and W. L. Miranker, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978/79), 167-198.  doi: 10.1090/qam/484023.
    [21] O. Makarenkov, Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proc. R. Soc. A., 476 (2020), 20190450.  doi: 10.1098/rspa.2019.0450.
    [22] R. Martins, The attractor of an equation of Tricomi's type, J. Math. Anal. Appl., 342 (2008), 1265-1270.  doi: 10.1016/j.jmaa.2008.01.017.
    [23] A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.
    [24] A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015.
    [25] B. PollardV. Fedonyuk and P. Tallapragada, Swimming on limit cycles with nonholonomic constraints, Nonlinear Dyn., 97 (2019), 2453-2468.  doi: 10.1007/s11071-019-05141-z.
    [26] A. A. Tolstonogov, Polyhedral set-valued maps: Properties and applications, Sibirsk. Mat. Zh., 61 (2020), 428-452.  doi: 10.33048/smzh.2020.61.216.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(265) PDF downloads(246) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return