doi: 10.3934/dcds.2021135
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction

1. 

Department of Mathematics "Tullio Levi-Civita", University of Padua, via Trieste 63, 35121 Padova (Italy)

2. 

Institute of Information Theory and Automation, Czech Academy of Sciences, Pod vodárenskou věží 4, CZ-182 08 Praha 8 (Czech Republic)

3. 

Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2841959 Rancagua (Chile)

*Corresponding author

Received  March 2021 Revised  July 2021 Early access September 2021

Fund Project: G.C. was partially supported by Padua University grant SID 2018 "Controllability, stabilizability and infimum gaps for control systems", prot. BIRD 187147, and by GNAMPA of INdAM. P.G. was partially supported by by the GAČR–FWF grant 19-29646L. E.V. was partially supported by ANID-Chile under grant Fondecyt de Iniciación N$ ^{\circ} $ 11180098

We study the asymptotic stability of periodic solutions for sweeping processes defined by a polyhedron with translationally moving faces. Previous results are improved by obtaining a stronger $ W^{1,2} $ convergence. Then we present an application to a model of crawling locomotion. Our stronger convergence allows us to prove the stabilization of the system to a running-periodic (or derivo-periodic, or relative-periodic) solution and the well-posedness of an average asymptotic velocity depending only on the gait adopted by the crawler. Finally, we discuss some examples of finite-time versus asymptotic-only convergence.

Citation: Giovanni Colombo, Paolo Gidoni, Emilio Vilches. Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021135
References:
[1]

J. Andres, Nonlinear rotations, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 495-503.  doi: 10.1016/S0362-546X(96)00208-8.  Google Scholar

[2]

J. AndresD. Bednařík and K. Pastor, On the notion of derivo-periodicity, J. Math. Anal. Appl., 303 (2005), 405-417.  doi: 10.1016/j.jmaa.2004.08.020.  Google Scholar

[3]

T. H. CaoG. ColomboB. S. Mordukhovich and D. Nguyen, Optimization of fully controlled sweeping processes, J. Differ. Eq., 295 (2021), 138-186.  doi: 10.1016/j.jde.2021.05.042.  Google Scholar

[4]

G. Colombo and P. Gidoni, On the optimal control of rate-independent soft crawlers, J. Math. Pures Appl., 146 (2021), 127-157.  doi: 10.1016/j.matpur.2020.11.005.  Google Scholar

[5]

G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications, (2010), 99–182.  Google Scholar

[6]

J. Eldering and H. O. Jacobs, The role of symmetry and dissipation in biolocomotion, SIAM J. Appl. Dyn. Syst., 15 (2016), 24-59.  doi: 10.1137/140970914.  Google Scholar

[7]

F. FassòS. Passarella and M. Zoppello, Control of locomotion systems and dynamics in relative periodic orbits, J. Geome. Mech., 12 (2020), 395-420.  doi: 10.3934/jgm.2020022.  Google Scholar

[8]

P. Gidoni, Rate-independent soft crawlers, Quart. J. Mech. Appl. Math., 71 (2018), 369-409.  doi: 10.1093/qjmam/hby010.  Google Scholar

[9]

P. Gidoni and A. DeSimone, Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler, Meccanica, 52 (2017), 587-601.  doi: 10.1007/s11012-016-0408-0.  Google Scholar

[10]

P. Gidoni and A. DeSimone, On the genesis of directional friction through bristle-like mediating elements, ESAIM Control Optim. Calc. Var., 23 (2017), 1023-1046.  doi: 10.1051/cocv/2017030.  Google Scholar

[11]

P. Gidoni and F. Riva, A vanishing inertia analysis for finite dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers, Calc. Var. Partial Differential Equations, 60 (2021), 54pp. doi: 10.1007/s00526-021-02067-6.  Google Scholar

[12]

I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems, preprint, arXiv: 2011.07744. Google Scholar

[13]

I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity, ESAIM Control Optim. Calc. Var., 27 (2021), 43pp. doi: 10.1051/cocv/2020043.  Google Scholar

[14]

I. Gudoshnikov, M. Kamenskii, O. Makarenkov and N. Voskovskaia., One-period stability analysis of polygonal sweeping processes with application to an elastoplastic model, Math. Model. Nat. Phenom., 15 (2020), 18pp. doi: 10.1051/mmnp/2019030.  Google Scholar

[15]

D. G. E. Hobbelen and M. Wisse, Limit Cycle Walking, Humanoid Robots, Human-like Machines, edited by M. Hackel, I-Tech Education and Publishing, 2007. Google Scholar

[16]

S. D. Kelly and R. M. Murray, Geometric phases and robotic locomotion, Journal of Robotic Systems, 12 (1995), 417-431.  doi: 10.1002/rob.4620120607.  Google Scholar

[17]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996. Google Scholar

[18]

P. Krejčí and V. Recupero, BV solutions of rate independent differential inclusions, Math. Bohem., 139 (2014), 607-619.  doi: 10.21136/MB.2014.144138.  Google Scholar

[19]

P. Krejčí and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions, Set-Valued Anal., 11 (2003), 91-110.  doi: 10.1023/A:1021980201718.  Google Scholar

[20]

M. LeviF. C. Hoppensteadt and W. L. Miranker, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978/79), 167-198.  doi: 10.1090/qam/484023.  Google Scholar

[21]

O. Makarenkov, Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proc. R. Soc. A., 476 (2020), 20190450.  doi: 10.1098/rspa.2019.0450.  Google Scholar

[22]

R. Martins, The attractor of an equation of Tricomi's type, J. Math. Anal. Appl., 342 (2008), 1265-1270.  doi: 10.1016/j.jmaa.2008.01.017.  Google Scholar

[23]

A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[24]

A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015.  Google Scholar

[25]

B. PollardV. Fedonyuk and P. Tallapragada, Swimming on limit cycles with nonholonomic constraints, Nonlinear Dyn., 97 (2019), 2453-2468.  doi: 10.1007/s11071-019-05141-z.  Google Scholar

[26]

A. A. Tolstonogov, Polyhedral set-valued maps: Properties and applications, Sibirsk. Mat. Zh., 61 (2020), 428-452.  doi: 10.33048/smzh.2020.61.216.  Google Scholar

show all references

References:
[1]

J. Andres, Nonlinear rotations, Nonlinear Analysis: Theory, Methods & Applications, 30 (1997), 495-503.  doi: 10.1016/S0362-546X(96)00208-8.  Google Scholar

[2]

J. AndresD. Bednařík and K. Pastor, On the notion of derivo-periodicity, J. Math. Anal. Appl., 303 (2005), 405-417.  doi: 10.1016/j.jmaa.2004.08.020.  Google Scholar

[3]

T. H. CaoG. ColomboB. S. Mordukhovich and D. Nguyen, Optimization of fully controlled sweeping processes, J. Differ. Eq., 295 (2021), 138-186.  doi: 10.1016/j.jde.2021.05.042.  Google Scholar

[4]

G. Colombo and P. Gidoni, On the optimal control of rate-independent soft crawlers, J. Math. Pures Appl., 146 (2021), 127-157.  doi: 10.1016/j.matpur.2020.11.005.  Google Scholar

[5]

G. Colombo and L. Thibault, Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications, (2010), 99–182.  Google Scholar

[6]

J. Eldering and H. O. Jacobs, The role of symmetry and dissipation in biolocomotion, SIAM J. Appl. Dyn. Syst., 15 (2016), 24-59.  doi: 10.1137/140970914.  Google Scholar

[7]

F. FassòS. Passarella and M. Zoppello, Control of locomotion systems and dynamics in relative periodic orbits, J. Geome. Mech., 12 (2020), 395-420.  doi: 10.3934/jgm.2020022.  Google Scholar

[8]

P. Gidoni, Rate-independent soft crawlers, Quart. J. Mech. Appl. Math., 71 (2018), 369-409.  doi: 10.1093/qjmam/hby010.  Google Scholar

[9]

P. Gidoni and A. DeSimone, Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler, Meccanica, 52 (2017), 587-601.  doi: 10.1007/s11012-016-0408-0.  Google Scholar

[10]

P. Gidoni and A. DeSimone, On the genesis of directional friction through bristle-like mediating elements, ESAIM Control Optim. Calc. Var., 23 (2017), 1023-1046.  doi: 10.1051/cocv/2017030.  Google Scholar

[11]

P. Gidoni and F. Riva, A vanishing inertia analysis for finite dimensional rate-independent systems with nonautonomous dissipation and an application to soft crawlers, Calc. Var. Partial Differential Equations, 60 (2021), 54pp. doi: 10.1007/s00526-021-02067-6.  Google Scholar

[12]

I. Gudoshnikov, O. Makarenkov and D. Rachinskiy, Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems, preprint, arXiv: 2011.07744. Google Scholar

[13]

I. Gudoshnikov and O. Makarenkov, Stabilization of the response of cyclically loaded lattice spring models with plasticity, ESAIM Control Optim. Calc. Var., 27 (2021), 43pp. doi: 10.1051/cocv/2020043.  Google Scholar

[14]

I. Gudoshnikov, M. Kamenskii, O. Makarenkov and N. Voskovskaia., One-period stability analysis of polygonal sweeping processes with application to an elastoplastic model, Math. Model. Nat. Phenom., 15 (2020), 18pp. doi: 10.1051/mmnp/2019030.  Google Scholar

[15]

D. G. E. Hobbelen and M. Wisse, Limit Cycle Walking, Humanoid Robots, Human-like Machines, edited by M. Hackel, I-Tech Education and Publishing, 2007. Google Scholar

[16]

S. D. Kelly and R. M. Murray, Geometric phases and robotic locomotion, Journal of Robotic Systems, 12 (1995), 417-431.  doi: 10.1002/rob.4620120607.  Google Scholar

[17]

P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996. Google Scholar

[18]

P. Krejčí and V. Recupero, BV solutions of rate independent differential inclusions, Math. Bohem., 139 (2014), 607-619.  doi: 10.21136/MB.2014.144138.  Google Scholar

[19]

P. Krejčí and A. Vladimirov, Polyhedral sweeping processes with oblique reflection in the space of regulated functions, Set-Valued Anal., 11 (2003), 91-110.  doi: 10.1023/A:1021980201718.  Google Scholar

[20]

M. LeviF. C. Hoppensteadt and W. L. Miranker, Dynamics of the Josephson junction, Quart. Appl. Math., 36 (1978/79), 167-198.  doi: 10.1090/qam/484023.  Google Scholar

[21]

O. Makarenkov, Existence and stability of limit cycles in the model of a planar passive biped walking down a slope, Proc. R. Soc. A., 476 (2020), 20190450.  doi: 10.1098/rspa.2019.0450.  Google Scholar

[22]

R. Martins, The attractor of an equation of Tricomi's type, J. Math. Anal. Appl., 342 (2008), 1265-1270.  doi: 10.1016/j.jmaa.2008.01.017.  Google Scholar

[23]

A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA. Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[24]

A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015.  Google Scholar

[25]

B. PollardV. Fedonyuk and P. Tallapragada, Swimming on limit cycles with nonholonomic constraints, Nonlinear Dyn., 97 (2019), 2453-2468.  doi: 10.1007/s11071-019-05141-z.  Google Scholar

[26]

A. A. Tolstonogov, Polyhedral set-valued maps: Properties and applications, Sibirsk. Mat. Zh., 61 (2020), 428-452.  doi: 10.33048/smzh.2020.61.216.  Google Scholar

Figure 1.  The model of soft crawler
Figure 2.  The orbit (red) of a solution $ z(t) $ of counterexample 5.2, converging only asymptotically to a constant solution $ \bar z $. The set $ C(t) $ is periodically sliding vertically. Notice that the solution will stop for progressively longer intervals at the edges of the orbit. The set $ \mathcal{Z} $ of periodic solutions is the set of constant functions with value in the light-gray triangle
Figure 3.  The orbit (red) of a solution $ z(t) $ of counterexample 5.3, converging only asymptotically to a periodic solution
[1]

Francesco Fassò, Simone Passarella, Marta Zoppello. Control of locomotion systems and dynamics in relative periodic orbits. Journal of Geometric Mechanics, 2020, 12 (3) : 395-420. doi: 10.3934/jgm.2020022

[2]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[3]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[4]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[5]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[6]

Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284

[7]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[8]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[9]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[10]

Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021

[11]

Miguel V. S. Frasson, Patricia H. Tacuri. Asymptotic behaviour of solutions to linear neutral delay differential equations with periodic coefficients. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1105-1117. doi: 10.3934/cpaa.2014.13.1105

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921

[14]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[15]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[16]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[17]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[18]

Fabrício Cristófani, Ademir Pastor. Nonlinear stability of periodic-wave solutions for systems of dispersive equations. Communications on Pure & Applied Analysis, 2020, 19 (10) : 5015-5032. doi: 10.3934/cpaa.2020225

[19]

Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049

[20]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

2020 Impact Factor: 1.392

Article outline

Figures and Tables

[Back to Top]