
-
Previous Article
Characterizing entropy dimensions of minimal mutidimensional subshifts of finite type
- DCDS Home
- This Issue
-
Next Article
Global stability solution of the 2D MHD equations with mixed partial dissipation
The nonlocal-interaction equation near attracting manifolds
1. | IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France |
2. | Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA |
We study the approximation of the nonlocal-interaction equation restricted to a compact manifold $ {\mathcal{M}} $ embedded in $ {\mathbb{R}}^d $, and more generally compact sets with positive reach (i.e. prox-regular sets). We show that the equation on $ {\mathcal{M}} $ can be approximated by the classical nonlocal-interaction equation on $ {\mathbb{R}}^d $ by adding an external potential which strongly attracts to $ {\mathcal{M}} $. The proof relies on the Sandier–Serfaty approach [
References:
[1] |
H. Ahn, S.-Y. Ha, H. Park and W. Shim, Emergent behaviors of Cucker–Smale flocks on the hyperboloid, J. Math. Phys., 62 (2021), Paper No. 082702, 22 pp. arXiv: 2007.02556.
doi: 10.1063/5.0020923. |
[2] |
L. Alasio, M. Bruna and J. A. Carrillo, The role of a strong confining potential in a nonlinear Fokker-Planck equation, Nonlinear Analysis, 193 (2020), 111480, 28 pp.
doi: 10.1016/j.na.2019.03.003. |
[3] |
L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks, vol. 2062 of Lecture Notes in Math., Springer, Heidelberg, (2013), 1–155.
doi: 10.1007/978-3-642-32160-3_1. |
[4] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[5] |
A. L. Bertozzi, T. Laurent and J. Rosado,
$L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.
doi: 10.1002/cpa.20334. |
[6] |
P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc, New York, 1999.
doi: 10.1002/9780470316962. |
[7] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[8] |
J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, 1–46, CISM Courses and Lect., 553, Springer, Vienna, (2014).
doi: 10.1007/978-3-7091-1785-9_1. |
[9] |
J. A. Carrillo, F. S. Patacchini, P. Sternberg and G. Wolansky,
Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.
doi: 10.1137/16M1077210. |
[10] |
J. A. Carrillo, D. Slepčev and L. Wu,
Nonlocal interaction equations on uniformly prox-regular sets, Discrete Contin. Dyn. Syst., 36 (2016), 1209-1247.
doi: 10.3934/dcds.2016.36.1209. |
[11] |
K. Craig and I. Topaloglu,
Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., 48 (2016), 34-60.
doi: 10.1137/15M1013882. |
[12] |
S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal Transport Theory and Applications, (2014), 100–144.
doi: 10.1017/CBO9781107297296.007. |
[13] |
R. C. Fetecau, S.-Y. Ha and H. Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: Well-posedness and collective behaviours, J. Nonlinear Sci., 31 (2021), Paper No. 74, 61 pp.
doi: 10.1007/s00332-021-09732-2. |
[14] |
R. C. Fetecau, H. Park and F. S. Patacchini, Well-posedness and asymptotic behaviour of an aggregation modelwith intrinsic interactions on sphere and other manifolds, preprint, arXiv: 2004.06951, (2020). |
[15] |
R. C. Fetecau and B. Zhang,
Self-organization on Riemannian manifolds, J. Geom. Mech., 11 (2019), 397-426.
doi: 10.3934/jgm.2019020. |
[16] |
N. García Trillos, M. Gerlach, M. Hein and D. Slepčev,
Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), 827-887.
doi: 10.1007/s10208-019-09436-w. |
[17] |
S.-Y. Ha and D. Kim,
A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.
doi: 10.1137/18M1205996. |
[18] |
S.-Y. Ha, D. Kim, J. Lee and S. E. Noh,
Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.
doi: 10.1007/s10955-018-2169-8. |
[19] |
S. Lisini,
Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control Optim. Calc. Var., 15 (2009), 712-740.
doi: 10.1051/cocv:2008044. |
[20] |
P. Niyogi, S. Smale and S. Weinberger,
Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), 419-441.
doi: 10.1007/s00454-008-9053-2. |
[21] |
F. S. Patacchini and D. Slepčev, GitHub repository for present paper with open source code, https://github.com/francesco-patacchini/interaction-equation-attracting-manifolds. |
[22] |
J. Rataj and L. Zajíček,
On the structure of sets with positive reach, Math. Nachr., 290 (2017), 1806-1829.
doi: 10.1002/mana.201600237. |
[23] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[24] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[25] |
L. Wu and D. Slepčev,
Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281.
doi: 10.1080/03605302.2015.1015033. |
show all references
References:
[1] |
H. Ahn, S.-Y. Ha, H. Park and W. Shim, Emergent behaviors of Cucker–Smale flocks on the hyperboloid, J. Math. Phys., 62 (2021), Paper No. 082702, 22 pp. arXiv: 2007.02556.
doi: 10.1063/5.0020923. |
[2] |
L. Alasio, M. Bruna and J. A. Carrillo, The role of a strong confining potential in a nonlinear Fokker-Planck equation, Nonlinear Analysis, 193 (2020), 111480, 28 pp.
doi: 10.1016/j.na.2019.03.003. |
[3] |
L. Ambrosio and N. Gigli, A user's guide to optimal transport, in Modelling and Optimisation of Flows on Networks, vol. 2062 of Lecture Notes in Math., Springer, Heidelberg, (2013), 1–155.
doi: 10.1007/978-3-642-32160-3_1. |
[4] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[5] |
A. L. Bertozzi, T. Laurent and J. Rosado,
$L^p$ theory for the multidimensional aggregation equation, Comm. Pure Appl. Math., 64 (2011), 45-83.
doi: 10.1002/cpa.20334. |
[6] |
P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc, New York, 1999.
doi: 10.1002/9780470316962. |
[7] |
J. A. Cañizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Models Methods Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[8] |
J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds, 1–46, CISM Courses and Lect., 553, Springer, Vienna, (2014).
doi: 10.1007/978-3-7091-1785-9_1. |
[9] |
J. A. Carrillo, F. S. Patacchini, P. Sternberg and G. Wolansky,
Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48 (2016), 3708-3741.
doi: 10.1137/16M1077210. |
[10] |
J. A. Carrillo, D. Slepčev and L. Wu,
Nonlocal interaction equations on uniformly prox-regular sets, Discrete Contin. Dyn. Syst., 36 (2016), 1209-1247.
doi: 10.3934/dcds.2016.36.1209. |
[11] |
K. Craig and I. Topaloglu,
Convergence of regularized nonlocal interaction energies, SIAM J. Math. Anal., 48 (2016), 34-60.
doi: 10.1137/15M1013882. |
[12] |
S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, Optimal Transport Theory and Applications, (2014), 100–144.
doi: 10.1017/CBO9781107297296.007. |
[13] |
R. C. Fetecau, S.-Y. Ha and H. Park, An intrinsic aggregation model on the special orthogonal group $SO(3)$: Well-posedness and collective behaviours, J. Nonlinear Sci., 31 (2021), Paper No. 74, 61 pp.
doi: 10.1007/s00332-021-09732-2. |
[14] |
R. C. Fetecau, H. Park and F. S. Patacchini, Well-posedness and asymptotic behaviour of an aggregation modelwith intrinsic interactions on sphere and other manifolds, preprint, arXiv: 2004.06951, (2020). |
[15] |
R. C. Fetecau and B. Zhang,
Self-organization on Riemannian manifolds, J. Geom. Mech., 11 (2019), 397-426.
doi: 10.3934/jgm.2019020. |
[16] |
N. García Trillos, M. Gerlach, M. Hein and D. Slepčev,
Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace-Beltrami operator, Found. Comput. Math., 20 (2020), 827-887.
doi: 10.1007/s10208-019-09436-w. |
[17] |
S.-Y. Ha and D. Kim,
A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.
doi: 10.1137/18M1205996. |
[18] |
S.-Y. Ha, D. Kim, J. Lee and S. E. Noh,
Particle and kinetic models for swarming particles on a sphere and stability properties, J. Stat. Phys., 174 (2019), 622-655.
doi: 10.1007/s10955-018-2169-8. |
[19] |
S. Lisini,
Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces, ESAIM: Control Optim. Calc. Var., 15 (2009), 712-740.
doi: 10.1051/cocv:2008044. |
[20] |
P. Niyogi, S. Smale and S. Weinberger,
Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39 (2008), 419-441.
doi: 10.1007/s00454-008-9053-2. |
[21] |
F. S. Patacchini and D. Slepčev, GitHub repository for present paper with open source code, https://github.com/francesco-patacchini/interaction-equation-attracting-manifolds. |
[22] |
J. Rataj and L. Zajíček,
On the structure of sets with positive reach, Math. Nachr., 290 (2017), 1806-1829.
doi: 10.1002/mana.201600237. |
[23] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[24] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[25] |
L. Wu and D. Slepčev,
Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281.
doi: 10.1080/03605302.2015.1015033. |





[1] |
Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 |
[2] |
Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216 |
[3] |
Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97. |
[4] |
Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747 |
[5] |
Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219 |
[6] |
Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857 |
[7] |
Wen Wang, Dapeng Xie, Hui Zhou. Local Aronson-Bénilan gradient estimates and Harnack inequality for the porous medium equation along Ricci flow. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1957-1974. doi: 10.3934/cpaa.2018093 |
[8] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285 |
[9] |
Samir Salem. A gradient flow approach of propagation of chaos. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243 |
[10] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[11] |
Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1921-1933. doi: 10.3934/dcdss.2020150 |
[12] |
César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019 |
[13] |
Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375 |
[14] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[15] |
Igor Chueshov, Tamara Fastovska. On interaction of circular cylindrical shells with a Poiseuille type flow. Evolution Equations and Control Theory, 2016, 5 (4) : 605-629. doi: 10.3934/eect.2016021 |
[16] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[17] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[18] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[19] |
Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935 |
[20] |
Feng Li, Erik Lindgren. Large time behavior for a nonlocal nonlinear gradient flow. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022079 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]