
-
Previous Article
Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition
- DCDS Home
- This Issue
-
Next Article
Topological mild mixing of all orders along polynomials
Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains
1. | Dipartimento di Scienze Matematiche, Politecnico di Torino, Italy |
2. | Dipartimento di Matematica, Politecnico di Milano, Italy |
For the evolution Navier-Stokes equations in bounded 3D domains, it is well-known that the uniqueness of a solution is related to the existence of a regular solution. They may be obtained under suitable assumptions on the data and smoothness assumptions on the domain (at least $ C^{2,1} $). With a symmetrization technique, we prove these results in the case of Navier boundary conditions in a wide class of merely Lipschitz domains of physical interest, that we call sectors.
References:
[1] |
P. Acevedo, C. Amrouche, C. Conca and A. Ghosh,
Stokes and Navier-Stokes equations with Navier boundary condition, C.R. Math. Acad. Sci. Paris, 357 (2019), 115-119.
doi: 10.1016/j.crma.2018.12.002. |
[2] |
C. Amrouche and A. Rejaiba,
$L^p$-theory for Stokes and Navier-Stokes equations with Navier boundary condition, J. Differential Equations, 256 (2014), 1515-1547.
doi: 10.1016/j.jde.2013.11.005. |
[3] |
G. Arioli, F. Gazzola and H. Koch, Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions, J. Math. Fluid Mech., 23 (2001), 20pp.
doi: 10.1007/s00021-021-00572-4. |
[4] |
G. S. Beavers and D. D. Joseph,
Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207.
|
[5] |
H. Beirão da Veiga,
Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differential Equations, 9 (2004), 1079-1114.
|
[6] |
H. Beirão da Veiga and L. C. Berselli,
Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Differential Equations, 246 (2009), 597-628.
doi: 10.1016/j.jde.2008.02.043. |
[7] |
L. C. Berselli,
Some results on the Navier-Stokes equations with Navier boundary conditions, Riv. Math. Univ. Parma (N.S.), 1 (2010), 1-75.
|
[8] |
L. C. Berselli,
An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 199-219.
doi: 10.3934/dcdss.2010.3.199. |
[9] |
G. Butler and T. Rogers,
A generalization of a lemma of Bihari and applications to pointwise estimates for integral equations, J. Math. Anal. Appl., 33 (1971), 77-81.
doi: 10.1016/0022-247X(71)90183-1. |
[10] |
A. Falocchi and F. Gazzola, Remarks on the 3D Stokes eigenvalue problem under Navier boundary conditions, Annali di Matematica, (2021). https://doi.org/10.1007/s10231-021-01165-8. |
[11] |
A. Friedman, Partial Differential Equations, olt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. |
[12] |
G. P. Galdi and W. J. Layton,
Approximation of the larger eddies in fluid motions. II. A model for space-filtered flow, Math. Models Methods Appl. Sci., 10 (2000), 343-350.
doi: 10.1142/S0218202500000203. |
[13] |
G. P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental Directions in Mathematical Fluid Mechanics, (2000), 1–70. |
[14] |
F. Gazzola and P. Secchi,
Inflow-outflow problems for Euler equations in a rectangular cylinder, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 195-217.
doi: 10.1007/PL00001445. |
[15] |
F. Gazzola and G. Sperone,
Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for unique solvability, Arch. Ration. Mech. Anal., 238 (2020), 1283-1347.
doi: 10.1007/s00205-020-01565-9. |
[16] |
J. G. Heywood,
The Navier-Stokes equations: On the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29 (1980), 639-681.
doi: 10.1512/iumj.1980.29.29048. |
[17] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[18] |
J. Leray,
Essai sur les mouvements plans d'un fluide visqueux que limitent des parois, J. Math. Pures Appl., 13 (1934), 331-419.
|
[19] |
P.-L. Lions, F. Pacella and M. Tricarico,
Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math., 37 (1988), 301-324.
doi: 10.1512/iumj.1988.37.37015. |
[20] |
C. L. M. H. Navier,
Mémoire sur les lois du mouvement des fluides, Mem. Acad. Sci. Inst. Fr., 2 (1823), 389-440.
|
[21] | |
[22] |
V. A. Solonnikov and V. E. Scadilov,
A certain boundary value problem for the stationary system of Navier-Stokes equations, Indiana Univ. Math., 125 (1973), 196-210.
|
[23] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and Its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[24] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2$^nd$ edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.
doi: 10.1137/1.9781611970050. |
[25] |
J. Watanabe,
On incompressible viscous fluid flows with slip boundary conditions, J. Comput. Appl. Math., 159 (2003), 161-172.
doi: 10.1016/S0377-0427(03)00568-5. |
[26] |
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9781139171755. |
show all references
References:
[1] |
P. Acevedo, C. Amrouche, C. Conca and A. Ghosh,
Stokes and Navier-Stokes equations with Navier boundary condition, C.R. Math. Acad. Sci. Paris, 357 (2019), 115-119.
doi: 10.1016/j.crma.2018.12.002. |
[2] |
C. Amrouche and A. Rejaiba,
$L^p$-theory for Stokes and Navier-Stokes equations with Navier boundary condition, J. Differential Equations, 256 (2014), 1515-1547.
doi: 10.1016/j.jde.2013.11.005. |
[3] |
G. Arioli, F. Gazzola and H. Koch, Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions, J. Math. Fluid Mech., 23 (2001), 20pp.
doi: 10.1007/s00021-021-00572-4. |
[4] |
G. S. Beavers and D. D. Joseph,
Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197-207.
|
[5] |
H. Beirão da Veiga,
Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differential Equations, 9 (2004), 1079-1114.
|
[6] |
H. Beirão da Veiga and L. C. Berselli,
Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Differential Equations, 246 (2009), 597-628.
doi: 10.1016/j.jde.2008.02.043. |
[7] |
L. C. Berselli,
Some results on the Navier-Stokes equations with Navier boundary conditions, Riv. Math. Univ. Parma (N.S.), 1 (2010), 1-75.
|
[8] |
L. C. Berselli,
An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 199-219.
doi: 10.3934/dcdss.2010.3.199. |
[9] |
G. Butler and T. Rogers,
A generalization of a lemma of Bihari and applications to pointwise estimates for integral equations, J. Math. Anal. Appl., 33 (1971), 77-81.
doi: 10.1016/0022-247X(71)90183-1. |
[10] |
A. Falocchi and F. Gazzola, Remarks on the 3D Stokes eigenvalue problem under Navier boundary conditions, Annali di Matematica, (2021). https://doi.org/10.1007/s10231-021-01165-8. |
[11] |
A. Friedman, Partial Differential Equations, olt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. |
[12] |
G. P. Galdi and W. J. Layton,
Approximation of the larger eddies in fluid motions. II. A model for space-filtered flow, Math. Models Methods Appl. Sci., 10 (2000), 343-350.
doi: 10.1142/S0218202500000203. |
[13] |
G. P. Galdi, An introduction to the Navier-Stokes initial-boundary value problem, Fundamental Directions in Mathematical Fluid Mechanics, (2000), 1–70. |
[14] |
F. Gazzola and P. Secchi,
Inflow-outflow problems for Euler equations in a rectangular cylinder, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 195-217.
doi: 10.1007/PL00001445. |
[15] |
F. Gazzola and G. Sperone,
Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for unique solvability, Arch. Ration. Mech. Anal., 238 (2020), 1283-1347.
doi: 10.1007/s00205-020-01565-9. |
[16] |
J. G. Heywood,
The Navier-Stokes equations: On the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29 (1980), 639-681.
doi: 10.1512/iumj.1980.29.29048. |
[17] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[18] |
J. Leray,
Essai sur les mouvements plans d'un fluide visqueux que limitent des parois, J. Math. Pures Appl., 13 (1934), 331-419.
|
[19] |
P.-L. Lions, F. Pacella and M. Tricarico,
Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math., 37 (1988), 301-324.
doi: 10.1512/iumj.1988.37.37015. |
[20] |
C. L. M. H. Navier,
Mémoire sur les lois du mouvement des fluides, Mem. Acad. Sci. Inst. Fr., 2 (1823), 389-440.
|
[21] | |
[22] |
V. A. Solonnikov and V. E. Scadilov,
A certain boundary value problem for the stationary system of Navier-Stokes equations, Indiana Univ. Math., 125 (1973), 196-210.
|
[23] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and Its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[24] |
R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2$^nd$ edition, CBMS-NSF Regional Conference Series in Applied Mathematics, 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.
doi: 10.1137/1.9781611970050. |
[25] |
J. Watanabe,
On incompressible viscous fluid flows with slip boundary conditions, J. Comput. Appl. Math., 159 (2003), 161-172.
doi: 10.1016/S0377-0427(03)00568-5. |
[26] |
J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9781139171755. |




[1] |
Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141 |
[2] |
Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228 |
[3] |
Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113 |
[4] |
Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355 |
[5] |
Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199 |
[6] |
Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 |
[7] |
Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 |
[8] |
Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 |
[9] |
Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673 |
[10] |
Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 |
[11] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[12] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
[13] |
Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219 |
[14] |
Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 |
[15] |
Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 |
[16] |
Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic and Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545 |
[17] |
Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064 |
[18] |
Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299 |
[19] |
Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067 |
[20] |
Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]