March  2022, 42(3): 1435-1463. doi: 10.3934/dcds.2021159

On the structure of α-limit sets of backward trajectories for graph maps

1. 

AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland

2. 

Mathematical Institute of the Silesian University in Opava, Na Rybníčku 1, 74601, Opava, Czech Republic

3. 

Centre of Excellence IT4Innovations - Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic

* Corresponding author: Jana Hantáková

Received  July 2021 Revised  September 2021 Published  March 2022 Early access  November 2021

In the paper we study what sets can be obtained as $ \alpha $-limit sets of backward trajectories in graph maps. We show that in the case of mixing maps, all those $ \alpha $-limit sets are $ \omega $-limit sets and for all but finitely many points $ x $, we can obtain every $ \omega $-limits set as the $ \alpha $-limit set of a backward trajectory starting in $ x $. For zero entropy maps, every $ \alpha $-limit set of a backward trajectory is a minimal set. In the case of maps with positive entropy, we obtain a partial characterization which is very close to complete picture of the possible situations.

Citation: Magdalena Foryś-Krawiec, Jana Hantáková, Piotr Oprocha. On the structure of α-limit sets of backward trajectories for graph maps. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1435-1463. doi: 10.3934/dcds.2021159
References:
[1]

E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996, 25–40.

[2]

E. Akin and E. Glasner, Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.  doi: 10.1007/BF02788112.

[3]

J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J., 32 (1980), 177-188.  doi: 10.2748/tmj/1178229634.

[4]

F. BalibreaG. DvorníkováM. Lampart and P. Oprocha, On negative limit sets for one-dimensional dynamics, Nonlinear Anal., 75 (2012), 3262-3267.  doi: 10.1016/j.na.2011.12.030.

[5]

A. BarwellC. GoodR. Knight and B. Raines, A characterization of $\omega$-limit sets in shift spaces, Ergodic Theory Dynam. Systems, 30 (2010), 21-31.  doi: 10.1017/S0143385708001089.

[6]

A. BarwellC. GoodP. Oprocha and B. Raines, Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.  doi: 10.3934/dcds.2013.33.1819.

[7]

A. M. Blokh, Dynamical systems on one–dimensional branched manifolds Ⅰ, J. Soviet Math., 48 (1990), 500-508.  doi: 10.1007/BF01095616.

[8]

A. M. Blokh, Dynamical systems on one–dimensional branched manifolds Ⅱ, J. Soviet Math., 48 (1990), 668-674.  doi: 10.1007/BF01094721.

[9]

A. M. Blokh, Dynamical systems on one–dimensional branched manifolds Ⅲ, J. Soviet Math., 49 (1990), 875-883.  doi: 10.1007/BF02205632.

[10]

A. BlokhA. M. BrucknerP. D. Humke and J. Smítal, The space of $\omega$-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 348 (1996), 1357-1372.  doi: 10.1090/S0002-9947-96-01600-5.

[11]

R. Bowen, $\omega$-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.  doi: 10.1016/0022-0396(75)90065-0.

[12]

J. ChudziakJ. L. G. GuiraoL. Snoha and V. Špitalský, Universality with respect to $\omega$-limit sets, Nonlinear Anal., 71 (2009), 1485-1495.  doi: 10.1016/j.na.2008.12.034.

[13]

E. Coven and Z. Nitecki, Non-wandering sets of the powers of maps of the interval, Ergodic Theory Dynam. Systems, 1 (1981), 9-31.  doi: 10.1017/S0143385700001139.

[14]

H. Cui and Y. Ding, The $\alpha$-limit sets of a unimodal map without homtervals, Topology Appl., 157 (2010), 22-28.  doi: 10.1016/j.topol.2009.04.054.

[15]

Y. Dowker and F. Frielander, On limit sets in dynamical systems, Proc. London Math. Soc., 4 (1954), 168-176.  doi: 10.1112/plms/s3-4.1.168.

[16]

J. Hantáková and S. Roth, On backward attractors of interval maps, Nonlinearity, 34 (2021), 7415-7445.  doi: 10.1088/1361-6544/ac23b6.

[17]

G. HarańczykD. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps, Ergodic Theory Dynam. Systems, 34 (2014), 1587-1614.  doi: 10.1017/etds.2013.6.

[18]

G. HaranczykD. Kwietniak and P. Oprocha, A note on transitivity, sensitivity and chaos for graph maps, J. Difference Equ. Appl., 17 (2011), 1549-1553.  doi: 10.1080/10236191003657253.

[19]

M. Hero, Special $\alpha$-limit points for maps of the interval, Proc. Amer. Math. Soc., 116 (1992), 1015-1022.  doi: 10.2307/2159483.

[20]

M. W. HirschH. L. Smith and X. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.

[21]

R. Hric and M. Málek, Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006), 2469-2475.  doi: 10.1016/j.topol.2005.09.007.

[22]

S. Jackson, B. Mance and S. Roth, A non-Borel special alpha-limit set in the square, Ergodic Theory Dynam. Systems, (2021), 1–11. doi: 10.1017/etds. 2021.68.

[23]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.

[24]

Z. KočanM. Málek and V. Kurková, On the centre and the set of $\omega$-limit points of continuous maps on dendrites, Topology Appl., 156 (2009), 2923-2931.  doi: 10.1016/j.topol.2009.02.008.

[25]

S. Kolyada, M. Misiurewicz and L. Snoha, Special $\alpha$-limit sets, Dynamics: Topology and Numbers, Contemp. Math., Amer. Math. Soc., Providence, RI, 744 (2020), 157–173. doi: 10.1090/conm/744/14976.

[26]

J. H. Mai and S. Shao, Spaces of $\omega$-limit sets of graph maps, Fund. Math., 196 (2007), 91-100.  doi: 10.4064/fm196-1-2.

[27]

J. Mai and S. Shao, The structure of graph maps without periodic points, Topology Appl., 154 (2007), 2714-2728.  doi: 10.1016/j.topol.2007.05.005.

[28]

J. Mai and T. Sun, Non-wandering points and the depth for graph maps, Sci. China Ser. A Math., 50 (2007), 1818-1824.  doi: 10.1007/s11425-007-0139-8.

[29]

J. MaiT. Sun and G. Zhang, Recurrent points and non–wandering points of graph maps, J. Math. Anal. Appl., 383 (2011), 553-559.  doi: 10.1016/j.jmaa.2011.05.052.

[30]

J. Munkres, Topology, 2$^nd$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.

[31]

A. N. Sharkovsky, Continuous maps on the set of limit points of an iterated sequence, Ukr. Math. J., 18 (1966), 127-130. 

[32]

S. Ruette and L. Snoha, For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc., 142 (2014), 2087-2100.  doi: 10.1090/S0002-9939-2014-11937-X.

[33]

T. SunY. TangG. SuH. Xi and B. Qin, Special $\alpha$-limit points and $\gamma$-limit points of a dendrite map, Qual. Theory Dyn. Syst., 17 (2018), 245-257.  doi: 10.1007/s12346-017-0225-4.

[34]

T. SunH. Xi and H. Liang, Special $\alpha$-limit points and unilateral $\gamma$ limit points for graph maps, Sci China Math., 54 (2011), 2013-2018.  doi: 10.1007/s11425-011-4254-1.

show all references

References:
[1]

E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996, 25–40.

[2]

E. Akin and E. Glasner, Residual properties and almost equicontinuity, J. Anal. Math., 84 (2001), 243-286.  doi: 10.1007/BF02788112.

[3]

J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J., 32 (1980), 177-188.  doi: 10.2748/tmj/1178229634.

[4]

F. BalibreaG. DvorníkováM. Lampart and P. Oprocha, On negative limit sets for one-dimensional dynamics, Nonlinear Anal., 75 (2012), 3262-3267.  doi: 10.1016/j.na.2011.12.030.

[5]

A. BarwellC. GoodR. Knight and B. Raines, A characterization of $\omega$-limit sets in shift spaces, Ergodic Theory Dynam. Systems, 30 (2010), 21-31.  doi: 10.1017/S0143385708001089.

[6]

A. BarwellC. GoodP. Oprocha and B. Raines, Characterizations of $\omega$-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.  doi: 10.3934/dcds.2013.33.1819.

[7]

A. M. Blokh, Dynamical systems on one–dimensional branched manifolds Ⅰ, J. Soviet Math., 48 (1990), 500-508.  doi: 10.1007/BF01095616.

[8]

A. M. Blokh, Dynamical systems on one–dimensional branched manifolds Ⅱ, J. Soviet Math., 48 (1990), 668-674.  doi: 10.1007/BF01094721.

[9]

A. M. Blokh, Dynamical systems on one–dimensional branched manifolds Ⅲ, J. Soviet Math., 49 (1990), 875-883.  doi: 10.1007/BF02205632.

[10]

A. BlokhA. M. BrucknerP. D. Humke and J. Smítal, The space of $\omega$-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 348 (1996), 1357-1372.  doi: 10.1090/S0002-9947-96-01600-5.

[11]

R. Bowen, $\omega$-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.  doi: 10.1016/0022-0396(75)90065-0.

[12]

J. ChudziakJ. L. G. GuiraoL. Snoha and V. Špitalský, Universality with respect to $\omega$-limit sets, Nonlinear Anal., 71 (2009), 1485-1495.  doi: 10.1016/j.na.2008.12.034.

[13]

E. Coven and Z. Nitecki, Non-wandering sets of the powers of maps of the interval, Ergodic Theory Dynam. Systems, 1 (1981), 9-31.  doi: 10.1017/S0143385700001139.

[14]

H. Cui and Y. Ding, The $\alpha$-limit sets of a unimodal map without homtervals, Topology Appl., 157 (2010), 22-28.  doi: 10.1016/j.topol.2009.04.054.

[15]

Y. Dowker and F. Frielander, On limit sets in dynamical systems, Proc. London Math. Soc., 4 (1954), 168-176.  doi: 10.1112/plms/s3-4.1.168.

[16]

J. Hantáková and S. Roth, On backward attractors of interval maps, Nonlinearity, 34 (2021), 7415-7445.  doi: 10.1088/1361-6544/ac23b6.

[17]

G. HarańczykD. Kwietniak and P. Oprocha, Topological structure and entropy of mixing graph maps, Ergodic Theory Dynam. Systems, 34 (2014), 1587-1614.  doi: 10.1017/etds.2013.6.

[18]

G. HaranczykD. Kwietniak and P. Oprocha, A note on transitivity, sensitivity and chaos for graph maps, J. Difference Equ. Appl., 17 (2011), 1549-1553.  doi: 10.1080/10236191003657253.

[19]

M. Hero, Special $\alpha$-limit points for maps of the interval, Proc. Amer. Math. Soc., 116 (1992), 1015-1022.  doi: 10.2307/2159483.

[20]

M. W. HirschH. L. Smith and X. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.  doi: 10.1023/A:1009044515567.

[21]

R. Hric and M. Málek, Omega limit sets and distributional chaos on graphs, Topology Appl., 153 (2006), 2469-2475.  doi: 10.1016/j.topol.2005.09.007.

[22]

S. Jackson, B. Mance and S. Roth, A non-Borel special alpha-limit set in the square, Ergodic Theory Dynam. Systems, (2021), 1–11. doi: 10.1017/etds. 2021.68.

[23]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.

[24]

Z. KočanM. Málek and V. Kurková, On the centre and the set of $\omega$-limit points of continuous maps on dendrites, Topology Appl., 156 (2009), 2923-2931.  doi: 10.1016/j.topol.2009.02.008.

[25]

S. Kolyada, M. Misiurewicz and L. Snoha, Special $\alpha$-limit sets, Dynamics: Topology and Numbers, Contemp. Math., Amer. Math. Soc., Providence, RI, 744 (2020), 157–173. doi: 10.1090/conm/744/14976.

[26]

J. H. Mai and S. Shao, Spaces of $\omega$-limit sets of graph maps, Fund. Math., 196 (2007), 91-100.  doi: 10.4064/fm196-1-2.

[27]

J. Mai and S. Shao, The structure of graph maps without periodic points, Topology Appl., 154 (2007), 2714-2728.  doi: 10.1016/j.topol.2007.05.005.

[28]

J. Mai and T. Sun, Non-wandering points and the depth for graph maps, Sci. China Ser. A Math., 50 (2007), 1818-1824.  doi: 10.1007/s11425-007-0139-8.

[29]

J. MaiT. Sun and G. Zhang, Recurrent points and non–wandering points of graph maps, J. Math. Anal. Appl., 383 (2011), 553-559.  doi: 10.1016/j.jmaa.2011.05.052.

[30]

J. Munkres, Topology, 2$^nd$ edition, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.

[31]

A. N. Sharkovsky, Continuous maps on the set of limit points of an iterated sequence, Ukr. Math. J., 18 (1966), 127-130. 

[32]

S. Ruette and L. Snoha, For graph maps, one scrambled pair implies Li-Yorke chaos, Proc. Amer. Math. Soc., 142 (2014), 2087-2100.  doi: 10.1090/S0002-9939-2014-11937-X.

[33]

T. SunY. TangG. SuH. Xi and B. Qin, Special $\alpha$-limit points and $\gamma$-limit points of a dendrite map, Qual. Theory Dyn. Syst., 17 (2018), 245-257.  doi: 10.1007/s12346-017-0225-4.

[34]

T. SunH. Xi and H. Liang, Special $\alpha$-limit points and unilateral $\gamma$ limit points for graph maps, Sci China Math., 54 (2011), 2013-2018.  doi: 10.1007/s11425-011-4254-1.

Figure 1.  A map where the family $ \mathcal{A}(x) $ is uncountable
Figure 2.  A map mixing interval map $ g $ with a fixed point $ p $ such that every backward branch $ \{z_j\}_{j\leq 0} $ with $ \{p\} = \alpha_g(\{z_j\}_{j\leq 0}) $ converges to $ p $ only from the right side. Every backward branch $ \{z_j\}_{j\leq 0} $ converging to $ p $ from the left side or from both sides has $ \alpha_g(\{z_j\}_{j\leq 0})\cap \{q, r\}\neq\emptyset $, where $ q, r $ are preimages of $ p $
[1]

Piotr Oprocha, Paweł Potorski. Topological mixing, knot points and bounds of topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3547-3564. doi: 10.3934/dcdsb.2015.20.3547

[2]

Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

[3]

Roberto De Leo, James A. Yorke. The graph of the logistic map is a tower. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5243-5269. doi: 10.3934/dcds.2021075

[4]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[5]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[6]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[7]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[8]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[9]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[10]

Katrin Gelfert. Lower bounds for the topological entropy. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 555-565. doi: 10.3934/dcds.2005.12.555

[11]

Jaume Llibre. Brief survey on the topological entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3363-3374. doi: 10.3934/dcdsb.2015.20.3363

[12]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[13]

Yang Cao, Song Shao. Topological mild mixing of all orders along polynomials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1163-1184. doi: 10.3934/dcds.2021150

[14]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[15]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[16]

Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545

[17]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[18]

Travis Dillon. Dynamics and entropy of $ \mathcal{S} $-graph shifts. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022117

[19]

Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201

[20]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (224)
  • HTML views (190)
  • Cited by (0)

[Back to Top]