
-
Previous Article
An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515)
- DCDS Home
- This Issue
-
Next Article
On the structure of α-limit sets of backward trajectories for graph maps
Eternal solutions for a reaction-diffusion equation with weighted reaction
Departamento de Matemática Aplicada, Ciencia e Ingenieria de los Materiales y Tecnologia Electrónica, Universidad Rey Juan Carlos, Móstoles, 28933, Madrid, Spain |
$ \partial_tu = \Delta u^m+|x|^{\sigma}u^p, $ |
$ \mathbb{R}^N $ |
$ m>1 $ |
$ 0<p<1 $ |
$ \sigma = \frac{2(1-p)}{m-1}. $ |
$ m+p\geq2 $ |
$ m+p<2 $ |
$ m+p>2 $ |
References:
[1] |
P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on $ \mathbb{R}^2$, Int. Math. Res. Not., 2006 (2006), Art. ID 83610, 20 pp.
doi: 10.1155/IMRN/2006/83610. |
[2] |
V. Galaktionov, L. A. Peletier and J. L. Vázquez,
Asymptotics of the fast-diffusion equation with critical exponent, SIAM J. Math. Anal., 31 (2000), 1157-1174.
doi: 10.1137/S0036141097328452. |
[3] |
B. H. Gilding and R. Kersner, Traveling Waves in Nonlinear Diffusion-Convection Reaction, in Progress in Nonlinear Differential Equations and Their Applications, Birkhauser, 2004.
doi: 10.1007/978-3-0348-7964-4. |
[4] |
J. Guckenheimer and Ph. Holmes, Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990. |
[5] |
R. G. Iagar and Ph. Laurençot,
Eternal solutions to a singular diffusion equation with critical gradient absorption, Nonlinearity, 26 (2013), 3169-3195.
doi: 10.1088/0951-7715/26/12/3169. |
[6] |
R. G. Iagar and A. Sánchez,
Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction, Adv. Nonl. Studies, 20 (2020), 867-894.
doi: 10.1515/ans-2020-2104. |
[7] |
R. G. Iagar and A. Sánchez,
Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction, J. Dynam. Differential Equations, 31 (2019), 2061-2094.
doi: 10.1007/s10884-018-09727-w. |
[8] |
R. Iagar, A. Sánchez and J. L. Vázquez,
Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl., 89 (2008), 1-24.
doi: 10.1016/j.matpur.2007.09.002. |
[9] |
A. de Pablo and A. Sánchez,
Global travelling waves in reaction-convection-diffusion equations, J. Differential Equations, 165 (2000), 377-413.
doi: 10.1006/jdeq.2000.3781. |
[10] |
A. de Pablo,
Large-time behaviour of solutions of a reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 389-398.
doi: 10.1017/S0308210500028547. |
[11] |
A. de Pablo and J. L. Vázquez,
The balance between strong reaction and slow diffusion, Comm. Partial Differential Equations, 15 (1990), 159-183.
doi: 10.1080/03605309908820682. |
[12] |
L. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics, 7, Springer Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[13] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Univ. Press, Oxford, 2006.
doi: 10.1093/acprof:oso/9780199202973.001.0001.![]() ![]() ![]() |
[14] |
J. L. Vázquez, Asymptotic behaviour of nonlinear parabolic equations. Anomalous exponents, Degenerate Diffusions (Minneapolis, MN, 1991), IMA Vol. Math. Appl., Springer, New York, 47 (1993), 215–228.
doi: 10.1007/978-1-4612-0885-3_15. |
show all references
References:
[1] |
P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci flow on $ \mathbb{R}^2$, Int. Math. Res. Not., 2006 (2006), Art. ID 83610, 20 pp.
doi: 10.1155/IMRN/2006/83610. |
[2] |
V. Galaktionov, L. A. Peletier and J. L. Vázquez,
Asymptotics of the fast-diffusion equation with critical exponent, SIAM J. Math. Anal., 31 (2000), 1157-1174.
doi: 10.1137/S0036141097328452. |
[3] |
B. H. Gilding and R. Kersner, Traveling Waves in Nonlinear Diffusion-Convection Reaction, in Progress in Nonlinear Differential Equations and Their Applications, Birkhauser, 2004.
doi: 10.1007/978-3-0348-7964-4. |
[4] |
J. Guckenheimer and Ph. Holmes, Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1990. |
[5] |
R. G. Iagar and Ph. Laurençot,
Eternal solutions to a singular diffusion equation with critical gradient absorption, Nonlinearity, 26 (2013), 3169-3195.
doi: 10.1088/0951-7715/26/12/3169. |
[6] |
R. G. Iagar and A. Sánchez,
Self-similar blow-up profiles for a reaction-diffusion equation with strong weighted reaction, Adv. Nonl. Studies, 20 (2020), 867-894.
doi: 10.1515/ans-2020-2104. |
[7] |
R. G. Iagar and A. Sánchez,
Self-similar blow-up profiles for a reaction-diffusion equation with critically strong weighted reaction, J. Dynam. Differential Equations, 31 (2019), 2061-2094.
doi: 10.1007/s10884-018-09727-w. |
[8] |
R. Iagar, A. Sánchez and J. L. Vázquez,
Radial equivalence for the two basic nonlinear degenerate diffusion equations, J. Math. Pures Appl., 89 (2008), 1-24.
doi: 10.1016/j.matpur.2007.09.002. |
[9] |
A. de Pablo and A. Sánchez,
Global travelling waves in reaction-convection-diffusion equations, J. Differential Equations, 165 (2000), 377-413.
doi: 10.1006/jdeq.2000.3781. |
[10] |
A. de Pablo,
Large-time behaviour of solutions of a reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 124 (1994), 389-398.
doi: 10.1017/S0308210500028547. |
[11] |
A. de Pablo and J. L. Vázquez,
The balance between strong reaction and slow diffusion, Comm. Partial Differential Equations, 15 (1990), 159-183.
doi: 10.1080/03605309908820682. |
[12] |
L. Perko, Differential Equations and Dynamical Systems, Third edition, Texts in Applied Mathematics, 7, Springer Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[13] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type, Oxford Univ. Press, Oxford, 2006.
doi: 10.1093/acprof:oso/9780199202973.001.0001.![]() ![]() ![]() |
[14] |
J. L. Vázquez, Asymptotic behaviour of nonlinear parabolic equations. Anomalous exponents, Degenerate Diffusions (Minneapolis, MN, 1991), IMA Vol. Math. Appl., Springer, New York, 47 (1993), 215–228.
doi: 10.1007/978-1-4612-0885-3_15. |



[1] |
Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817 |
[2] |
Razvan Gabriel Iagar, Ana Isabel Muñoz, Ariel Sánchez. Self-similar blow-up patterns for a reaction-diffusion equation with weighted reaction in general dimension. Communications on Pure and Applied Analysis, 2022, 21 (3) : 891-925. doi: 10.3934/cpaa.2022003 |
[3] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[4] |
Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 |
[5] |
Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115 |
[6] |
Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 |
[7] |
Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193 |
[8] |
Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25 |
[9] |
Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209 |
[10] |
A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65 |
[11] |
F. Berezovskaya, G. Karev. Bifurcations of self-similar solutions of the Fokker-Plank equations. Conference Publications, 2005, 2005 (Special) : 91-99. doi: 10.3934/proc.2005.2005.91 |
[12] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[13] |
Hyungjin Huh. Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness. Evolution Equations and Control Theory, 2018, 7 (1) : 53-60. doi: 10.3934/eect.2018003 |
[14] |
Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319 |
[15] |
Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic and Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 |
[16] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[17] |
Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815 |
[18] |
Rui Li, Yuan Lou. Some monotone properties for solutions to a reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4445-4455. doi: 10.3934/dcdsb.2019126 |
[19] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[20] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]