• Previous Article
    Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle
  • DCDS Home
  • This Issue
  • Next Article
    Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition
doi: 10.3934/dcds.2021162
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles

College of Sciences, Hohai University, No.1 Xikang Road, Nanjing, Jiangsu 210098, China

* Corresponding author: Kai Tao

Received  February 2020 Revised  August 2020 Early access November 2021

Fund Project: The author is supported by The author is supported by the Fundamental Research Funds for the Central Universities (Grant B200202004) and China Postdoctoral Science Foundation (Grant 2019M650094)

In this paper, we first prove the strong Birkhoff Ergodic Theorem for subharmonic functions with the irrational shift on the Torus. Then, we apply it to the analytic quasi-periodic Jacobi cocycles and show that for suitable frequency and coupling number, if the Lyapunov exponent of these cocycles is positive at one point, then it is positive on an interval centered at this point and Hölder continuous in $ E $ on this interval. What's more, if the coupling number of the potential is large, then the Lyapunov exponent is always positive for all irrational frequencies and Hölder continuous in $ E $ for all finite Liouville frequencies. For the Schrödinger cocycles, a special case of the Jacobi ones, its Lyapunov exponent is also Hölder continuous in the frequency and the lengths of the intervals where the Hölder condition of the Lyapunov exponent holds only depend on the coupling number.

Citation: Kai Tao. Strong Birkhoff ergodic theorem for subharmonic functions with irrational shift and its application to analytic quasi-periodic cocycles. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021162
References:
[1]

P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev., 109 (1958), 1492-1501.  doi: 10.1103/PhysRev.109.1492.  Google Scholar

[2]

A. AvilaS. Jitomirskaya and C. A. Marx, Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 1-57.  doi: 10.1007/s00222-017-0729-1.  Google Scholar

[3]

A. AvilaS. Jitomirskaya and C. Sadel, Complex one-frequency cocycles, J. of Euro. Math. Soc., 9 (2013), 1915-1935.  doi: 10.4171/JEMS/479.  Google Scholar

[4]

A. Avila, Y. Last, M. Shamis and Q. Zhou, On the abominable properties of the Almost Mathieu operator with well approximated frequencies, In preparation. Google Scholar

[5] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Princeton University Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[6]

J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math., 152 (2000), 835-879.  doi: 10.2307/2661356.  Google Scholar

[7]

J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Statist. Phys., 108 (2002), 1203-1218.  doi: 10.1023/A:1019751801035.  Google Scholar

[8]

A. Furman, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 797-815.  doi: 10.1016/S0246-0203(97)80113-6.  Google Scholar

[9] J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511546617.  Google Scholar
[10]

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., 2 (2001), 155-203.  doi: 10.2307/3062114.  Google Scholar

[11]

M. Goldstein and W. Schlag, Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Analysis, 18 (2008), 755-869.  doi: 10.1007/s00039-008-0670-y.  Google Scholar

[12]

R. Han and S. Zhang, Optimal large deviation estimates and Hölder regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles, arXiv: 1803.02035v1. Google Scholar

[13]

P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. London, 68 (1955), 874-892.  doi: 10.1088/0370-1298/68/10/304.  Google Scholar

[14]

S. JitomirskayaD. A. Koslover and M. S. Schulteis, Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergodic Theory Dynam. Systems, 29 (2009), 1881-1905.  doi: 10.1017/S0143385709000704.  Google Scholar

[15]

S. Jitomirskaya and C. A. Marx, Continuity of the Lyapunov exponent for analytic quasi-perodic cocycles with singularities, Journal of Fixed Point Theory and Applications, 10 (2011), 129-146.  doi: 10.1007/s11784-011-0055-y.  Google Scholar

[16]

S. Jitomirskaya and C. A. Marx, Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper's model, Commun. Math. Phys., 316 (2012), 237-267.  doi: 10.1007/s00220-012-1465-4.  Google Scholar

[17]

S. Jitomirskaya and C. A. Marx, Erratum to: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper's model, Commun. Math. Phys., 317 (2012), 269-271.  doi: 10.1007/s00220-012-1637-2.  Google Scholar

[18]

W. Schlag, Regularity and convergence rates for the Lyapunov exponents of linear cocycles, J. Mod. Dyn., 7 (2013), 619-637.  doi: 10.3934/jmd.2013.7.619.  Google Scholar

[19]

E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys., 142 (1991), 543-566.  doi: 10.1007/BF02099100.  Google Scholar

[20]

K. Tao, Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators, Bulletin de la SMF, 142 (2014), 635-671.  doi: 10.24033/bsmf.2675.  Google Scholar

[21]

J. You and S. Zhang, Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Th. Dynam. Sys., 34 (2014), 1395-1408.  doi: 10.1017/etds.2013.4.  Google Scholar

show all references

References:
[1]

P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev., 109 (1958), 1492-1501.  doi: 10.1103/PhysRev.109.1492.  Google Scholar

[2]

A. AvilaS. Jitomirskaya and C. A. Marx, Spectral theory of extended Harper's model and a question by Erdös and Szekeres, Inv. Math., 210 (2017), 1-57.  doi: 10.1007/s00222-017-0729-1.  Google Scholar

[3]

A. AvilaS. Jitomirskaya and C. Sadel, Complex one-frequency cocycles, J. of Euro. Math. Soc., 9 (2013), 1915-1935.  doi: 10.4171/JEMS/479.  Google Scholar

[4]

A. Avila, Y. Last, M. Shamis and Q. Zhou, On the abominable properties of the Almost Mathieu operator with well approximated frequencies, In preparation. Google Scholar

[5] J. Bourgain, Green's Function Estimates for Lattice Schrödinger Operators and Applications, Princeton University Press, 2005.  doi: 10.1515/9781400837144.  Google Scholar
[6]

J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math., 152 (2000), 835-879.  doi: 10.2307/2661356.  Google Scholar

[7]

J. Bourgain and S. Jitomirskaya, Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential, J. Statist. Phys., 108 (2002), 1203-1218.  doi: 10.1023/A:1019751801035.  Google Scholar

[8]

A. Furman, On the multiplicative ergodic theorem for uniquely ergodic systems, Ann. Inst. Henri Poincare Probab. Statist., 33 (1997), 797-815.  doi: 10.1016/S0246-0203(97)80113-6.  Google Scholar

[9] J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511546617.  Google Scholar
[10]

M. Goldstein and W. Schlag, Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions, Ann. of Math., 2 (2001), 155-203.  doi: 10.2307/3062114.  Google Scholar

[11]

M. Goldstein and W. Schlag, Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues, Geom. Funct. Analysis, 18 (2008), 755-869.  doi: 10.1007/s00039-008-0670-y.  Google Scholar

[12]

R. Han and S. Zhang, Optimal large deviation estimates and Hölder regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles, arXiv: 1803.02035v1. Google Scholar

[13]

P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. London, 68 (1955), 874-892.  doi: 10.1088/0370-1298/68/10/304.  Google Scholar

[14]

S. JitomirskayaD. A. Koslover and M. S. Schulteis, Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles, Ergodic Theory Dynam. Systems, 29 (2009), 1881-1905.  doi: 10.1017/S0143385709000704.  Google Scholar

[15]

S. Jitomirskaya and C. A. Marx, Continuity of the Lyapunov exponent for analytic quasi-perodic cocycles with singularities, Journal of Fixed Point Theory and Applications, 10 (2011), 129-146.  doi: 10.1007/s11784-011-0055-y.  Google Scholar

[16]

S. Jitomirskaya and C. A. Marx, Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper's model, Commun. Math. Phys., 316 (2012), 237-267.  doi: 10.1007/s00220-012-1465-4.  Google Scholar

[17]

S. Jitomirskaya and C. A. Marx, Erratum to: Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper's model, Commun. Math. Phys., 317 (2012), 269-271.  doi: 10.1007/s00220-012-1637-2.  Google Scholar

[18]

W. Schlag, Regularity and convergence rates for the Lyapunov exponents of linear cocycles, J. Mod. Dyn., 7 (2013), 619-637.  doi: 10.3934/jmd.2013.7.619.  Google Scholar

[19]

E. Sorets and T. Spencer, Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys., 142 (1991), 543-566.  doi: 10.1007/BF02099100.  Google Scholar

[20]

K. Tao, Hölder continuity of Lyapunov exponent for quasi-periodic Jacobi operators, Bulletin de la SMF, 142 (2014), 635-671.  doi: 10.24033/bsmf.2675.  Google Scholar

[21]

J. You and S. Zhang, Hölder continuity of the Lyapunov exponent for analytic quasiperiodic Schrödinger cocycles with week Liouville frequency, Ergod. Th. Dynam. Sys., 34 (2014), 1395-1408.  doi: 10.1017/etds.2013.4.  Google Scholar

[1]

Pedro Duarte, Silvius Klein, Manuel Santos. A random cocycle with non Hölder Lyapunov exponent. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4841-4861. doi: 10.3934/dcds.2019197

[2]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[3]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[4]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[5]

Samia Challal, Abdeslem Lyaghfouri. Hölder continuity of solutions to the $A$-Laplace equation involving measures. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1577-1583. doi: 10.3934/cpaa.2009.8.1577

[6]

Lili Li, Chunrong Chen. Nonlinear scalarization with applications to Hölder continuity of approximate solutions. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 295-307. doi: 10.3934/naco.2014.4.295

[7]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[8]

Arnulf Jentzen, Benno Kuckuck, Thomas Müller-Gronbach, Larisa Yaroslavtseva. Counterexamples to local Lipschitz and local Hölder continuity with respect to the initial values for additive noise driven stochastic differential equations with smooth drift coefficient functions with at most polynomially growing derivatives. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021203

[9]

Łukasz Struski, Jacek Tabor. Expansivity implies existence of Hölder continuous Lyapunov function. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3575-3589. doi: 10.3934/dcdsb.2017180

[10]

Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013

[11]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[12]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[13]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[14]

Susanna Terracini, Gianmaria Verzini, Alessandro Zilio. Uniform Hölder regularity with small exponent in competition-fractional diffusion systems. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2669-2691. doi: 10.3934/dcds.2014.34.2669

[15]

Russell Johnson, Mahesh G. Nerurkar. On $SL(2, R)$ valued cocycles of Hölder class with zero exponent over Kronecker flows. Communications on Pure & Applied Analysis, 2011, 10 (3) : 873-884. doi: 10.3934/cpaa.2011.10.873

[16]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[17]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[18]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[19]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[20]

Boris Muha. A note on the Trace Theorem for domains which are locally subgraph of a Hölder continuous function. Networks & Heterogeneous Media, 2014, 9 (1) : 191-196. doi: 10.3934/nhm.2014.9.191

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (36)
  • HTML views (40)
  • Cited by (0)

Other articles
by authors

[Back to Top]