-
Previous Article
Expansive flows on uniform spaces
- DCDS Home
- This Issue
-
Next Article
On long-time asymptotic behavior for solutions to 2D temperature-dependent tropical climate model
Quantitative destruction of invariant circles
School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency $ \omega $ of an integrable system by a trigonometric polynomial of degree $ N $ perturbation $ R_N $ with $ \|R_N\|_{C^r}<\epsilon $. We obtain a relation among $ N $, $ r $, $ \epsilon $ and the arithmetic property of $ \omega $, for which the area-preserving map admit no invariant circles with $ \omega $.
References:
[1] |
V. Bangert,
Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1 (1988), 1-45.
|
[2] |
Q. Chen and C.-Q. Cheng,
Regular dependence of the Peierls barriers on perturbations, J. Differential Equations, 262 (2017), 4700-4723.
doi: 10.1016/j.jde.2016.12.018. |
[3] |
C.-Q. Cheng and L. Wang,
Destruction of Lagrangian torus in positive definite Hamiltonian systems, Geometric and Functional Analysis, 23 (2013), 848-866.
doi: 10.1007/s00039-013-0213-z. |
[4] |
G. Forni,
Analytic destruction of invariant circles, Ergod. Th. & Dynam. Sys., 14 (1994), 267-298.
doi: 10.1017/S0143385700007872. |
[5] |
M.-R. Herman,
Sur la conjugation diff$\acute{e}$rentiable des diff$\acute{e}$omorphismes du cercle $\grave{a}$ des rotations, Publ. Math. IHES, 49 (1979), 5-233.
doi: 10.1007/BF02684798. |
[6] |
M.-R. Herman, Sur Les Courbes Invariantes Par Les Diff$\acute{e}$omorphismes de L'anneau, Ast$\acute{\text{e}}$risque, 103-104 1983,221 pp. |
[7] |
M.-R. Herman, Sur Les Courbes Invariantes Par Les Diff$\acute{e}$omorphismes de L'anneau, Ast$\acute{\text{e}}$risque, 144 1986. |
[8] |
J. N. Mather, Modulus of continuity for Peierls's barrier, Periodic Solutions of Hamiltonian Systems and Related Topics, ed. P. H. Rabinowitz et al. NATO ASI Series C, 209. Reidel: Dordrecht, (1987), 177–202. |
[9] |
J. N. Mather,
Destruction of invariant circles, Ergod. Th. & Dynam. Sys., 8 (1988), 199-214.
doi: 10.1017/S0143385700009421. |
[10] |
J. Pöschel,
Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696.
doi: 10.1002/cpa.3160350504. |
[11] |
W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, 785. Springer, Berlin, 1980. x+299 pp. |
[12] |
L. Wang,
Variational destruction of invariant circles, Discrete and Continuous Dynamical Systems-A, 32 (2012), 4429-4443.
doi: 10.3934/dcds.2012.32.4429. |
[13] |
L. Wang,
Total destruction of Lagrangian tori, Journal of Mathematical Analysis and Applications, 410 (2014), 827-836.
doi: 10.1016/j.jmaa.2013.09.018. |
[14] |
L. Wang,
Destruction of invariant circles for Gevrey area-preserving twist maps, J. Dynam. Differential Equations, 27 (2015), 283-295.
doi: 10.1007/s10884-014-9361-6. |
[15] |
A. Zygmund, Trigonometric Series, Third Edition Volumes Ⅰ & Ⅱ combined, with a foreword by Robert Fefferman. Cambridge University Press, Cambridge, 2002. |
show all references
References:
[1] |
V. Bangert,
Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1 (1988), 1-45.
|
[2] |
Q. Chen and C.-Q. Cheng,
Regular dependence of the Peierls barriers on perturbations, J. Differential Equations, 262 (2017), 4700-4723.
doi: 10.1016/j.jde.2016.12.018. |
[3] |
C.-Q. Cheng and L. Wang,
Destruction of Lagrangian torus in positive definite Hamiltonian systems, Geometric and Functional Analysis, 23 (2013), 848-866.
doi: 10.1007/s00039-013-0213-z. |
[4] |
G. Forni,
Analytic destruction of invariant circles, Ergod. Th. & Dynam. Sys., 14 (1994), 267-298.
doi: 10.1017/S0143385700007872. |
[5] |
M.-R. Herman,
Sur la conjugation diff$\acute{e}$rentiable des diff$\acute{e}$omorphismes du cercle $\grave{a}$ des rotations, Publ. Math. IHES, 49 (1979), 5-233.
doi: 10.1007/BF02684798. |
[6] |
M.-R. Herman, Sur Les Courbes Invariantes Par Les Diff$\acute{e}$omorphismes de L'anneau, Ast$\acute{\text{e}}$risque, 103-104 1983,221 pp. |
[7] |
M.-R. Herman, Sur Les Courbes Invariantes Par Les Diff$\acute{e}$omorphismes de L'anneau, Ast$\acute{\text{e}}$risque, 144 1986. |
[8] |
J. N. Mather, Modulus of continuity for Peierls's barrier, Periodic Solutions of Hamiltonian Systems and Related Topics, ed. P. H. Rabinowitz et al. NATO ASI Series C, 209. Reidel: Dordrecht, (1987), 177–202. |
[9] |
J. N. Mather,
Destruction of invariant circles, Ergod. Th. & Dynam. Sys., 8 (1988), 199-214.
doi: 10.1017/S0143385700009421. |
[10] |
J. Pöschel,
Integrability of Hamiltonian systems on Cantor sets, Comm. Pure Appl. Math., 35 (1982), 653-696.
doi: 10.1002/cpa.3160350504. |
[11] |
W. M. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, 785. Springer, Berlin, 1980. x+299 pp. |
[12] |
L. Wang,
Variational destruction of invariant circles, Discrete and Continuous Dynamical Systems-A, 32 (2012), 4429-4443.
doi: 10.3934/dcds.2012.32.4429. |
[13] |
L. Wang,
Total destruction of Lagrangian tori, Journal of Mathematical Analysis and Applications, 410 (2014), 827-836.
doi: 10.1016/j.jmaa.2013.09.018. |
[14] |
L. Wang,
Destruction of invariant circles for Gevrey area-preserving twist maps, J. Dynam. Differential Equations, 27 (2015), 283-295.
doi: 10.1007/s10884-014-9361-6. |
[15] |
A. Zygmund, Trigonometric Series, Third Edition Volumes Ⅰ & Ⅱ combined, with a foreword by Robert Fefferman. Cambridge University Press, Cambridge, 2002. |
[1] |
Hans Koch. On trigonometric skew-products over irrational circle-rotations. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5455-5471. doi: 10.3934/dcds.2021084 |
[2] |
Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101 |
[3] |
Azniv Kasparian, Ivan Marinov. Duursma's reduced polynomial. Advances in Mathematics of Communications, 2017, 11 (4) : 647-669. doi: 10.3934/amc.2017048 |
[4] |
Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341 |
[5] |
Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553 |
[6] |
Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335 |
[7] |
Victor Magron, Marcelo Forets, Didier Henrion. Semidefinite approximations of invariant measures for polynomial systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6745-6770. doi: 10.3934/dcdsb.2019165 |
[8] |
Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure and Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41 |
[9] |
John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7. |
[10] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[11] |
Robert J. Martin, Patrizio Neff. Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. Journal of Geometric Mechanics, 2016, 8 (3) : 323-357. doi: 10.3934/jgm.2016010 |
[12] |
Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 |
[13] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[14] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[15] |
Mary Wilkerson. Thurston's algorithm and rational maps from quadratic polynomial matings. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2403-2433. doi: 10.3934/dcdss.2019151 |
[16] |
B. Campos, P. Vindel. Transversal intersections of invariant manifolds of NMS flows on $S^{3}$. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 41-56. doi: 10.3934/dcds.2012.32.41 |
[17] |
R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39 |
[18] |
David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85 |
[19] |
A. A. Pinto, D. Sullivan. The circle and the solenoid. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 463-504. doi: 10.3934/dcds.2006.16.463 |
[20] |
Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]