doi: 10.3934/dcds.2021166
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Propagation dynamics of a nonlocal time-space periodic reaction-diffusion model with delay

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

* Corresponding author: Zhi-Cheng Wang

Received  April 2021 Revised  August 2021 Early access November 2021

Fund Project: Both authors are supported by NNSF of China (12071193, 11731005) and NSF of Gansu Province of China (21JR7RA535)

This paper is concerned with a nonlocal time-space periodic reaction diffusion model with age structure. We first prove the existence and global attractivity of time-space periodic solution for the model. Next, by a family of principal eigenvalues associated with linear operators, we characterize the asymptotic speed of spread of the model in the monotone and non-monotone cases. Furthermore, we introduce a notion of transition semi-waves for the model, and then by constructing appropriate upper and lower solutions, and using the results of the asymptotic speed of spread, we show that transition semi-waves of the model in the non-monotone case exist when their wave speed is above a critical speed, and transition semi-waves do not exist anymore when their wave speed is less than the critical speed. It turns out that the asymptotic speed of spread coincides with the critical wave speed of transition semi-waves in the non-monotone case. In addition, we show that the obtained transition semi-waves are actually transition waves in the monotone case. Finally, numerical simulations for various cases are carried out to support our theoretical results.

Citation: Ning Wang, Zhi-Cheng Wang. Propagation dynamics of a nonlocal time-space periodic reaction-diffusion model with delay. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021166
References:
[1]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations. In: Perspectives in nonlinear partial differential equations. Providence: Amer. Math. Soc., Contemp. Math., 446 (2007), 101-123. doi: 10.1090/conm/446.  Google Scholar

[2]

H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648.  doi: 10.1002/cpa.21389.  Google Scholar

[3]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I-Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[4]

X. Bao and Z.-C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435.  doi: 10.1016/j.jde.2013.06.024.  Google Scholar

[5]

F. Cao and W. Shen, Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media, Discrete Contin. Dyn. Syst., 37 (2017), 4697-4727.  doi: 10.3934/dcds.2017202.  Google Scholar

[6]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific and Technical, Harlow, 1992.  Google Scholar

[7]

D. Duehring and W. Huang, Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction, J. Dynam. Differential Equations, 19 (2007), 457-477.  doi: 10.1007/s10884-006-9048-8.  Google Scholar

[8]

J. FangX. Yu and X.-Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Funct. Anal., 272 (2017), 4222-4262.  doi: 10.1016/j.jfa.2017.02.028.  Google Scholar

[9]

T. FariaW. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229-261.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[10]

T. Faria and S. Trofimchuk, Nonmonotone travelling waves in a single species reaction-diffusion equation with delay, J. Differential Equations, 228 (2006), 357-376.  doi: 10.1016/j.jde.2006.05.006.  Google Scholar

[11]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.  Google Scholar

[12]

B. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction, Progress in Nonlinear Differential Equations and their Applications, 60, Birkhäuser Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4.  Google Scholar

[13]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[14]

Z. GuoF. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.  doi: 10.1007/s00285-011-0500-y.  Google Scholar

[15]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., 247, Longman Scientific and Technical, Harlow, 1991.  Google Scholar

[16]

W. Huang, Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion equations with time delay and nonlocal response, J. Differential Equations, 244 (2008), 1230-1254.  doi: 10.1016/j.jde.2007.10.001.  Google Scholar

[17]

W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224.  doi: 10.1016/j.jde.2015.09.060.  Google Scholar

[18]

Y. Jin and X.-Q. Zhao, Spatial dynamics of a nonlocal periodic reaction-diffusion model with stage structure, SIAM J. Math. Anal., 40 (2009), 2496-2516.  doi: 10.1137/070709761.  Google Scholar

[19]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995.  Google Scholar

[20]

N. KinezakiK. KawasakiF. Takasu and N. Shigesada, Modeling biological invasions into periodically fragmented environments, Theor. Population Biol., 64 (2003), 291-302.  doi: 10.1016/S0040-5809(03)00091-1.  Google Scholar

[21]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, Amer. Math. Soc., Providence, Rhode Island, U.S.A., 1968.  Google Scholar

[22]

J. Li and X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079.  doi: 10.1007/s11538-009-9457-z.  Google Scholar

[23]

P. Li and S.-L. Wu, Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 39, 16pp. doi: 10.1007/s00033-018-0936-7.  Google Scholar

[24]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[25]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[26]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[27]

M. Ma, J. Yue and C. Ou, Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion equations, Proc. Royal Soc. A, 475 (2019), 20180898, 10 pp. doi: 10.1098/rspa.2018.0898.  Google Scholar

[28]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[29]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436.  doi: 10.1007/s10884-006-9065-7.  Google Scholar

[30]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[31]

G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009), 232-262.  doi: 10.1016/j.matpur.2009.04.002.  Google Scholar

[32]

G. Nadin and L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations, J. Math. Pures Appl., 98 (2012), 633-653.  doi: 10.1016/j.matpur.2012.05.005.  Google Scholar

[33]

G. Nadin and L. Rossi, Transition waves for Fisher-KPP equations with general time heterogeneous and space-periodic coefficients, Anal. PDE, 8 (2015), 1351-1377.  doi: 10.2140/apde.2015.8.1351.  Google Scholar

[34]

G. Nadin and L. Rossi, Generalized transition fronts for one-dimensional almost periodic Fisher-KPP equations, Arch. Ration. Mech. Anal., 223 (2017), 1239-1267.  doi: 10.1007/s00205-016-1056-1.  Google Scholar

[35]

J. NolenJ.-M. RoquejoffreL. Ryzhik and A. Zlatós, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal., 203 (2012), 217-246.  doi: 10.1007/s00205-011-0449-4.  Google Scholar

[36]

Z. Ouyang and C. Ou, Global stability and convergence rate of traveling waves for a nonlocal model in periodic media, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 993-1007.  doi: 10.3934/dcdsb.2012.17.993.  Google Scholar

[37]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[38]

W. Shen, Traveling waves in diffusive random media, J. Dynam. Differential Equations, 16 (2004), 1011-1060.  doi: 10.1007/s10884-004-7832-x.  Google Scholar

[39] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, New York, 1997.   Google Scholar
[40]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional- differential equations, J. Differential Equations, 93 (1991), 332-363.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[41]

J. W.-H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[42]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[43]

H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations, J. Differential Equations, 247 (2009), 887-905.  doi: 10.1016/j.jde.2009.04.002.  Google Scholar

[44]

N. WangZ.-C. Wang and X. Bao, Transition waves for lattice Fisher-KPP equations with time and space dependence, Proc. Roy. Soc. Edinburgh Sect. A, 151 (2021), 573-600.  doi: 10.1017/prm.2020.31.  Google Scholar

[45]

Z.-C. Wang and W.-T. Li, Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1081-1109.  doi: 10.1017/S0308210509000262.  Google Scholar

[46]

Z.-C. WangW.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[47]

Z.-C. WangW.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[48]

Z.-C. WangL. Zhang and X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR epidemic model, J. Dynam. Differential Equations, 30 (2018), 379-403.  doi: 10.1007/s10884-016-9546-2.  Google Scholar

[49]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[50]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete Contin. Dyn. Syst., 29 (2011), 343-366.  doi: 10.3934/dcds.2011.29.343.  Google Scholar

[51]

S.-L. Wu and C.-H. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.  doi: 10.1017/S0308210512001412.  Google Scholar

[52]

L. ZhangZ.-C. Wang and X.-Q. Zhao, Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity, Trans. Amer. Math. Soc., 372 (2019), 1751-1782.  doi: 10.1090/tran/7709.  Google Scholar

[53]

X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[54]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444.   Google Scholar

show all references

References:
[1]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations. In: Perspectives in nonlinear partial differential equations. Providence: Amer. Math. Soc., Contemp. Math., 446 (2007), 101-123. doi: 10.1090/conm/446.  Google Scholar

[2]

H. Berestycki and F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math., 65 (2012), 592-648.  doi: 10.1002/cpa.21389.  Google Scholar

[3]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I-Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[4]

X. Bao and Z.-C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differential Equations, 255 (2013), 2402-2435.  doi: 10.1016/j.jde.2013.06.024.  Google Scholar

[5]

F. Cao and W. Shen, Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media, Discrete Contin. Dyn. Syst., 37 (2017), 4697-4727.  doi: 10.3934/dcds.2017202.  Google Scholar

[6]

D. Daners and P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman Scientific and Technical, Harlow, 1992.  Google Scholar

[7]

D. Duehring and W. Huang, Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction, J. Dynam. Differential Equations, 19 (2007), 457-477.  doi: 10.1007/s10884-006-9048-8.  Google Scholar

[8]

J. FangX. Yu and X.-Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, J. Funct. Anal., 272 (2017), 4222-4262.  doi: 10.1016/j.jfa.2017.02.028.  Google Scholar

[9]

T. FariaW. Huang and J. Wu, Travelling waves for delayed reaction-diffusion equations with global response, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 229-261.  doi: 10.1098/rspa.2005.1554.  Google Scholar

[10]

T. Faria and S. Trofimchuk, Nonmonotone travelling waves in a single species reaction-diffusion equation with delay, J. Differential Equations, 228 (2006), 357-376.  doi: 10.1016/j.jde.2006.05.006.  Google Scholar

[11]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.  Google Scholar

[12]

B. Gilding and R. Kersner, Travelling Waves in Nonlinear Diffusion-Convection Reaction, Progress in Nonlinear Differential Equations and their Applications, 60, Birkhäuser Verlag, Basel, 2004. doi: 10.1007/978-3-0348-7964-4.  Google Scholar

[13]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[14]

Z. GuoF. Wang and X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol., 65 (2012), 1387-1410.  doi: 10.1007/s00285-011-0500-y.  Google Scholar

[15]

P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., 247, Longman Scientific and Technical, Harlow, 1991.  Google Scholar

[16]

W. Huang, Traveling waves connecting equilibrium and periodic orbit for reaction-diffusion equations with time delay and nonlocal response, J. Differential Equations, 244 (2008), 1230-1254.  doi: 10.1016/j.jde.2007.10.001.  Google Scholar

[17]

W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224.  doi: 10.1016/j.jde.2015.09.060.  Google Scholar

[18]

Y. Jin and X.-Q. Zhao, Spatial dynamics of a nonlocal periodic reaction-diffusion model with stage structure, SIAM J. Math. Anal., 40 (2009), 2496-2516.  doi: 10.1137/070709761.  Google Scholar

[19]

T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Springer-Verlag, Berlin, 1995.  Google Scholar

[20]

N. KinezakiK. KawasakiF. Takasu and N. Shigesada, Modeling biological invasions into periodically fragmented environments, Theor. Population Biol., 64 (2003), 291-302.  doi: 10.1016/S0040-5809(03)00091-1.  Google Scholar

[21]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralćeva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, Amer. Math. Soc., Providence, Rhode Island, U.S.A., 1968.  Google Scholar

[22]

J. Li and X. Zou, Modeling spatial spread of infectious diseases with a fixed latent period in a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048-2079.  doi: 10.1007/s11538-009-9457-z.  Google Scholar

[23]

P. Li and S.-L. Wu, Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation, Z. Angew. Math. Phys., 69 (2018), 39, 16pp. doi: 10.1007/s00033-018-0936-7.  Google Scholar

[24]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, J. Differential Equations, 231 (2006), 57-77.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[25]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.  Google Scholar

[26]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[27]

M. Ma, J. Yue and C. Ou, Propagation direction of the bistable travelling wavefront for delayed non-local reaction diffusion equations, Proc. Royal Soc. A, 475 (2019), 20180898, 10 pp. doi: 10.1098/rspa.2018.0898.  Google Scholar

[28]

S. Ma, Traveling waves for non-local delayed diffusion equations via auxiliary equations, J. Differential Equations, 237 (2007), 259-277.  doi: 10.1016/j.jde.2007.03.014.  Google Scholar

[29]

S. Ma and J. Wu, Existence, uniqueness and asymptotic stability of traveling wavefronts in non-local delayed diffusion equation, J. Dynam. Differential Equations, 19 (2007), 391-436.  doi: 10.1007/s10884-006-9065-7.  Google Scholar

[30]

R. H. Martin and H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[31]

G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl., 92 (2009), 232-262.  doi: 10.1016/j.matpur.2009.04.002.  Google Scholar

[32]

G. Nadin and L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations, J. Math. Pures Appl., 98 (2012), 633-653.  doi: 10.1016/j.matpur.2012.05.005.  Google Scholar

[33]

G. Nadin and L. Rossi, Transition waves for Fisher-KPP equations with general time heterogeneous and space-periodic coefficients, Anal. PDE, 8 (2015), 1351-1377.  doi: 10.2140/apde.2015.8.1351.  Google Scholar

[34]

G. Nadin and L. Rossi, Generalized transition fronts for one-dimensional almost periodic Fisher-KPP equations, Arch. Ration. Mech. Anal., 223 (2017), 1239-1267.  doi: 10.1007/s00205-016-1056-1.  Google Scholar

[35]

J. NolenJ.-M. RoquejoffreL. Ryzhik and A. Zlatós, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal., 203 (2012), 217-246.  doi: 10.1007/s00205-011-0449-4.  Google Scholar

[36]

Z. Ouyang and C. Ou, Global stability and convergence rate of traveling waves for a nonlocal model in periodic media, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 993-1007.  doi: 10.3934/dcdsb.2012.17.993.  Google Scholar

[37]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[38]

W. Shen, Traveling waves in diffusive random media, J. Dynam. Differential Equations, 16 (2004), 1011-1060.  doi: 10.1007/s10884-004-7832-x.  Google Scholar

[39] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, New York, 1997.   Google Scholar
[40]

H. L. Smith and H. R. Thieme, Strongly order preserving semiflows generated by functional- differential equations, J. Differential Equations, 93 (1991), 332-363.  doi: 10.1016/0022-0396(91)90016-3.  Google Scholar

[41]

J. W.-H. SoJ. Wu and X. Zou, A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457 (2001), 1841-1853.  doi: 10.1098/rspa.2001.0789.  Google Scholar

[42]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[43]

H. Wang, On the existence of traveling waves for delayed reaction-diffusion equations, J. Differential Equations, 247 (2009), 887-905.  doi: 10.1016/j.jde.2009.04.002.  Google Scholar

[44]

N. WangZ.-C. Wang and X. Bao, Transition waves for lattice Fisher-KPP equations with time and space dependence, Proc. Roy. Soc. Edinburgh Sect. A, 151 (2021), 573-600.  doi: 10.1017/prm.2020.31.  Google Scholar

[45]

Z.-C. Wang and W.-T. Li, Dynamics of a non-local delayed reaction-diffusion equation without quasi-monotonicity, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1081-1109.  doi: 10.1017/S0308210509000262.  Google Scholar

[46]

Z.-C. WangW.-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[47]

Z.-C. WangW.-T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[48]

Z.-C. WangL. Zhang and X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR epidemic model, J. Dynam. Differential Equations, 30 (2018), 379-403.  doi: 10.1007/s10884-016-9546-2.  Google Scholar

[49]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[50]

P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat, Discrete Contin. Dyn. Syst., 29 (2011), 343-366.  doi: 10.3934/dcds.2011.29.343.  Google Scholar

[51]

S.-L. Wu and C.-H. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1085-1112.  doi: 10.1017/S0308210512001412.  Google Scholar

[52]

L. ZhangZ.-C. Wang and X.-Q. Zhao, Propagation dynamics of a time periodic and delayed reaction-diffusion model without quasi-monotonicity, Trans. Amer. Math. Soc., 372 (2019), 1751-1782.  doi: 10.1090/tran/7709.  Google Scholar

[53]

X.-Q. Zhao, Dynamical Systems in Population Biology, 2$^{nd}$ edition, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[54]

X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444.   Google Scholar

Figure 1.  The long-time behaviour of the solution of (68). Changes in color represent changes in height. Baseline parameter values: $ D = 0.1, $ $ D_j = 0.1, $ $ \mu_j = 0.1, $ $ \tau = 1, $ $ p(x) = 0.5+0.2\cos(x), $ $ q = 0.3 $ and the periodicity of space $ L = 2\pi. $ The right panel is the two-dimensional projection of the left panel onto the $ xt $-plane
Figure 2.  The long-time behaviour of the solution of (69). Changes in color represent changes in height. Baseline parameter values: $ D = 0.1, $ $ D_j = 0.1, $ $ \mu_j = 0.1, $ $ \tau = 1, $ $ p_1(t) = 0.5+0.2\cos(\frac{t}{2}), $ $ q = 0.3 $ and the periodicity of time $ T = 4\pi. $ The right panel is the two-dimensional projection of the left panel onto the $ xt $-plane
Figure 3.  The long-time behaviour of the solution of (70). Changes in color represent changes in height. Baseline parameter values: $ D = 0.1, $ $ D_j = 0.1, $ $ \mu_j = 0.1, $ $ \tau = 1, $ $ p_2(t, x) = 0.7+0.2\cos(\frac{t}{2})+0.2\cos(x), $ $ q = 0.3, $ the periodicity of time $ T = 4\pi $ and the periodicity of space $ L = 2\pi. $ The right panel is the two-dimensional projection of the left panel onto the $ xt $-plane
Figure 4.  The shapes of the birth function $ b(x, u) = p(x)ue^{\bar{p}(x)u} $ and death function $ d(x, u) = qu $ for equation (71), where $ p(x) = 12+2\sin\left(x\right), $ $ \bar{p}(x) = -0.7-0.2\cos\left(x\right), $ $ q = 0.2. $ Changes in color represent changes in height. The right panel is the two-dimensional projection of the left panel onto the $ uoz $-plane
Figure 5.  The shapes of the birth function $ b(t, u) = p_1(t)ue^{\bar{p}_1(t)u} $ and death function $ d(x, u) = q_1u $ for equation (72), where $ p(x) = 12+2\cos\left(t\right), $ $ \bar{p}(x) = -0.7-0.2\sin\left(t\right), $ $ q = 0.4. $ Changes in color represent changes in height. The right panel is the two-dimensional projection of the left panel onto the $ uoz $-plane
Figure 6.  The long-time behaviour of the solution of (71). Changes in color represent changes in height. Baseline parameter values: $ D = 0.1, $ $ D_j = 0.1, $ $ \mu_j = 0.1, $ $ \tau = 10, $ $ p(x) = 12+2\sin\left(x\right), $ $ \bar{p}(x) = -0.7-0.2\cos\left(x\right), $ $ q = 0.2 $ and the periodicity of space $ L = 2\pi. $ The right panel is the two-dimensional projection of the left panel onto the $ xt $-plane
Figure 7.  The long-time behaviour of the solution of (72). Changes in color represent changes in height. Baseline parameter values: $ D = 0.1, $ $ D_j = 0.1, $ $ \mu_j = 0.1, $ $ \tau = 10, $ $ p_1(t) = 12+2\cos\left(t\right), $ $ \bar{p}_1(t) = -0.7-0.2\sin\left(t\right), $ $ q_1 = 0.4 $ and the periodicity of time $ T = 2\pi. $ The right panel is the two-dimensional projection of the left panel onto the $ xt $-plane
Figure 8.  The long-time behaviour of the solution of (73). Changes in color represent changes in height. Baseline parameter values: $ D = 0.1, $ $ D_j = 0.1, $ $ \mu_j = 0.1, $ $ \tau = 10, $ $ p_2(t, x) = 13+2\cos\left(\sqrt{2}t\right)+\sin\left(x\right), $ $ \bar{p}_2(t, x) = -1.1-0.2\cos\left(x\right), $ $ q = 0.3, $ the periodicity of time $ T = \sqrt{2}\pi $ and the periodicity of space $ L = 2\pi. $ The right panel is the two-dimensional projection of the left panel onto the $ xt $-plane
[1]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[2]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[3]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[4]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[5]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 4959-4985. doi: 10.3934/dcds.2021064

[6]

Yuxiang Zhang, Shiwang Ma. Invasion dynamics of a diffusive pioneer-climax model: Monotone and non-monotone cases. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4767-4788. doi: 10.3934/dcdsb.2020312

[7]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[8]

Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667

[9]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[10]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[11]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[12]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[13]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[14]

Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž. Asymptotic periodicity of flows in time-depending networks. Networks & Heterogeneous Media, 2013, 8 (4) : 843-855. doi: 10.3934/nhm.2013.8.843

[15]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[16]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[17]

Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001

[18]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021145

[19]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[20]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (72)
  • HTML views (38)
  • Cited by (0)

Other articles
by authors

[Back to Top]