We prove the stability of optimal traffic plans in branched transport. In particular, we show that any limit of optimal traffic plans is optimal as well. This result goes beyond the Eulerian stability proved in [
Citation: |
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.
![]() ![]() |
[2] |
M. Bernot, V. Caselles and J.-M. Morel, Traffic plans, Publ. Mat., 49 (2005), 417-451.
doi: 10.5565/PUBLMAT_49205_09.![]() ![]() ![]() |
[3] |
M. Bernot, V. Caselles and J.-M. Morel, Optimal Transportation Networks: Models and Theory, Lecture Notes in Mathematics, 1955. Springer-Verlag, Berlin, 2009.
![]() ![]() |
[4] |
A. Brancolini and S. Solimini, Fractal regularity results on optimal irrigation patterns, J. Math. Pures Appl., 102 (2014), 854–890, URL https://www-sciencedirect-com-s.proxy.bu.dauphine.fr/science/article/pii/S0021782414000166.
doi: 10.1016/j.matpur.2014.02.008.![]() ![]() ![]() |
[5] |
M. Colombo, A. De Rosa and A. Marchese, Improved stability of optimal traffic paths, Calc. Var. Partial Differential Equations, 57 (2018), 33pp.
doi: 10.1007/s00526-017-1299-1.![]() ![]() ![]() |
[6] |
M. Colombo, A. De Rosa and A. Marchese, Stability for the mailing problem, J. Math. Pures Appl., 128 (2019), 152-182.
doi: 10.1016/j.matpur.2019.01.020.![]() ![]() ![]() |
[7] |
M. Colombo, A. De Rosa and A. Marchese, On the well-posedness of branched transportation, Comm. Pure Appl. Math., 74 (2021), 833-864.
doi: 10.1002/cpa.21919.![]() ![]() ![]() |
[8] |
M. Colombo, A. De Rosa, A. Marchese and S. Stuvard, On the lower semicontinuous envelope of functionals defined on polyhedral chains, Nonlinear Anal., 163 (2017), 201-215.
doi: 10.1016/j.na.2017.08.002.![]() ![]() ![]() |
[9] |
G. Devillanova and S. Solimini, Elementary properties of optimal irrigation patterns, Calc. Var. Partial Differential Equations, 28 (2007), 317-349.
doi: 10.1007/s00526-006-0046-9.![]() ![]() ![]() |
[10] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015.
![]() ![]() |
[11] |
F. Maddalena and S. Solimini, Synchronic and asynchronic descriptions of irrigation problems, Adv. Nonlinear Stud., 13 (2013), 583-623.
doi: 10.1515/ans-2013-0303.![]() ![]() ![]() |
[12] |
F. Maddalena, S. Solimini and J.-M. Morel, A variational model of irrigation patterns, Interfaces Free Bound., 5 (2003), 391-415.
doi: 10.4171/IFB/85.![]() ![]() ![]() |
[13] |
P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.
![]() ![]() |
[14] |
E. Paolini and E. Stepanov, Optimal transportation networks as flat chains, Interfaces Free Bound., 8 (2006), 393-436.
doi: 10.4171/IFB/149.![]() ![]() ![]() |
[15] |
P. Pegon, Branched Transport and Fractal Structures, Theses, Université Paris-Saclay, 2017, URL https://tel.archives-ouvertes.fr/tel-01661457.
![]() |
[16] |
P. Pegon, On the lagrangian branched transport model and the equivalence with its eulerian formulation, Topological Optimization and Optimal Transport, Radon Ser. Comput. Appl. Math., 17 (2017), 281-303.
![]() ![]() |
[17] |
F. Santambrogio, A Dacorogna-Moser approach to flow decomposition and minimal flow problems, Congrès SMAI, ESAIM Proc. Surveys, EDP Sci., Les Ulis, 45 (2014), 265–274.
doi: 10.1051/proc/201445027.![]() ![]() ![]() |
[18] |
L. Simon, Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983.
![]() ![]() |
[19] |
S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows, Algebra i Analiz, 5 (1993), 206-238.
![]() ![]() |
[20] |
Q. Xia, Optimal paths related to transport problems, Commun. Contemp. Math., 5 (2003), 251-279.
doi: 10.1142/S021919970300094X.![]() ![]() ![]() |