
-
Previous Article
Nonlinear nonlocal reaction-diffusion problem with local reaction
- DCDS Home
- This Issue
-
Next Article
Rigidity, weak mixing, and recurrence in abelian groups
On super-exponential divergence of periodic points for partially hyperbolic systems
1. | Graduate School of Mathematics and Statistics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, China |
2. | Graduate School of Business Administration, Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo, Japan |
We say that a diffeomorphism $ f $ is super-exponentially divergent if for every $ b>1 $ the lower limit of $ \#\mbox{Per}_n(f)/b^n $ diverges to infinity, where $ \mbox{Per}_n(f) $ is the set of all periodic points of $ f $ with period $ n $. This property is stronger than the usual super-exponential growth of the number of periodic points. We show that for any $ n $-dimensional smooth closed manifold $ M $ where $ n\ge 3 $, there exists a non-empty open subset $ \mathcal{O} $ of $ \mbox{Diff}^1(M) $ such that diffeomorphisms with super-exponentially divergent property form a dense subset of $ \mathcal{O} $ in the $ C^1 $-topology. A relevant result about the growth rate of the lower limit of the number of periodic points for diffeomorphisms in a $ C^r $-residual subset of $ \mbox{Diff}^r(M)\ (1\le r\le \infty) $ is also shown.
References:
[1] |
F. Abdenur, C. Bonatti, S. Crovisier, L. J. Díaz and L. Wen,
Periodic points and homoclinic classes, Erg. Th. Dyn. Sys., 27 (2007), 1-22.
doi: 10.1017/S0143385706000538. |
[2] |
M. Artin and B. Mazur,
On periodic points, Ann. of Math., 81 (1965), 82-99.
doi: 10.2307/1970384. |
[3] |
M. Asaoka, K. Shinohara and D. Turaev,
Degenerate behavior in non-hyperbolic semi-group actions on the interval: Fast growth of periodic points and universal dynamics, Math. Ann., 368 (2017), 1277-1309.
doi: 10.1007/s00208-016-1468-0. |
[4] |
M. Asaoka, K. Shinohara and D. Turaev,
Fast growth of the number of periodic points arising from heterodimensional connections, Compos. Math., 157 (2021), 1899-1963.
doi: 10.1112/S0010437X21007405. |
[5] |
P. Berger, Generic family displaying robustly a fast growth of the number of periodic points, preprint, arXiv: 1701.02393. |
[6] |
C. Bonatti and L. J. Díaz,
Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008), 469-525.
doi: 10.1017/S1474748008000030. |
[7] |
C. Bonatti and L. J. Díaz,
Fragile cycles, J. Differential Equations, 252 (2012), 4176-4199.
doi: 10.1016/j.jde.2011.12.002. |
[8] |
C. Bonatti, L. J. Díaz and T. Fisher,
Super-exponential growth of the number of periodic orbits inside homoclinic classes, Discrete Contin. Dyn. Syst., 20 (2008), 589-604.
doi: 10.3934/dcds.2008.20.589. |
[9] |
C. Bonatti, L. J. Díaz, E. R. Pujals and J. Rocha,
Robustly transitive sets and heterodimensional cycles. Geometric methods in dynamics. I., Astérisque, 286 (2003), 187-222.
|
[10] |
C. Bonatti, L. J. Díaz and R. Ures,
Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.
doi: 10.1017/S1474748002000142. |
[11] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, Berlin, 2005. |
[12] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316.![]() ![]() ![]() |
[13] |
L. J. Díaz and R. Ures,
Persistent homoclinic tangencies and the unfolding of cycles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 643-659.
doi: 10.1016/S0294-1449(16)30172-X. |
[14] |
L. F. N. França,
Partially hyperbolic sets with a dynamically minimal lamination, Discrete Contin. Dyn. Syst., 38 (2018), 2717-2729.
doi: 10.3934/dcds.2018114. |
[15] |
J. Franks,
Necessary conditions for stability of diffeomorphisms, Tran. Amer. Math. Soc., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[16] |
S. Hayashi,
Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega$-stability conjecture for flows, Ann. of Math., 145 (1997), 81-137.
doi: 10.2307/2951824. |
[17] |
F. R. Hertz, M. R. Hertz and R. Ures,
Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, 51 (2007), 103-109.
|
[18] |
M. Hirsch, Differential Topology. Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. |
[19] |
V. Kaloshin,
An extension of the Artin-Mazur theorem, Ann. Math., 150 (1999), 729-741.
doi: 10.2307/121093. |
[20] |
K. Shinohara,
An example of $C^1$-generically wild homoclinic classes with index deficiency, Nonlinearity, 24 (2011), 1961-1974.
doi: 10.1088/0951-7715/24/7/003. |
show all references
References:
[1] |
F. Abdenur, C. Bonatti, S. Crovisier, L. J. Díaz and L. Wen,
Periodic points and homoclinic classes, Erg. Th. Dyn. Sys., 27 (2007), 1-22.
doi: 10.1017/S0143385706000538. |
[2] |
M. Artin and B. Mazur,
On periodic points, Ann. of Math., 81 (1965), 82-99.
doi: 10.2307/1970384. |
[3] |
M. Asaoka, K. Shinohara and D. Turaev,
Degenerate behavior in non-hyperbolic semi-group actions on the interval: Fast growth of periodic points and universal dynamics, Math. Ann., 368 (2017), 1277-1309.
doi: 10.1007/s00208-016-1468-0. |
[4] |
M. Asaoka, K. Shinohara and D. Turaev,
Fast growth of the number of periodic points arising from heterodimensional connections, Compos. Math., 157 (2021), 1899-1963.
doi: 10.1112/S0010437X21007405. |
[5] |
P. Berger, Generic family displaying robustly a fast growth of the number of periodic points, preprint, arXiv: 1701.02393. |
[6] |
C. Bonatti and L. J. Díaz,
Robust heterodimensional cycles and $C^1$-generic dynamics, J. Inst. Math. Jussieu, 7 (2008), 469-525.
doi: 10.1017/S1474748008000030. |
[7] |
C. Bonatti and L. J. Díaz,
Fragile cycles, J. Differential Equations, 252 (2012), 4176-4199.
doi: 10.1016/j.jde.2011.12.002. |
[8] |
C. Bonatti, L. J. Díaz and T. Fisher,
Super-exponential growth of the number of periodic orbits inside homoclinic classes, Discrete Contin. Dyn. Syst., 20 (2008), 589-604.
doi: 10.3934/dcds.2008.20.589. |
[9] |
C. Bonatti, L. J. Díaz, E. R. Pujals and J. Rocha,
Robustly transitive sets and heterodimensional cycles. Geometric methods in dynamics. I., Astérisque, 286 (2003), 187-222.
|
[10] |
C. Bonatti, L. J. Díaz and R. Ures,
Minimality of strong stable and unstable foliations for partially hyperbolic diffeomorphisms, J. Inst. Math. Jussieu, 1 (2002), 513-541.
doi: 10.1017/S1474748002000142. |
[11] |
C. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag, Berlin, 2005. |
[12] |
M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511755316.![]() ![]() ![]() |
[13] |
L. J. Díaz and R. Ures,
Persistent homoclinic tangencies and the unfolding of cycles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 643-659.
doi: 10.1016/S0294-1449(16)30172-X. |
[14] |
L. F. N. França,
Partially hyperbolic sets with a dynamically minimal lamination, Discrete Contin. Dyn. Syst., 38 (2018), 2717-2729.
doi: 10.3934/dcds.2018114. |
[15] |
J. Franks,
Necessary conditions for stability of diffeomorphisms, Tran. Amer. Math. Soc., 158 (1971), 301-308.
doi: 10.1090/S0002-9947-1971-0283812-3. |
[16] |
S. Hayashi,
Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega$-stability conjecture for flows, Ann. of Math., 145 (1997), 81-137.
doi: 10.2307/2951824. |
[17] |
F. R. Hertz, M. R. Hertz and R. Ures,
Some results on the integrability of the center bundle for partially hyperbolic diffeomorphisms, Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow, 51 (2007), 103-109.
|
[18] |
M. Hirsch, Differential Topology. Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. |
[19] |
V. Kaloshin,
An extension of the Artin-Mazur theorem, Ann. Math., 150 (1999), 729-741.
doi: 10.2307/121093. |
[20] |
K. Shinohara,
An example of $C^1$-generically wild homoclinic classes with index deficiency, Nonlinearity, 24 (2011), 1961-1974.
doi: 10.1088/0951-7715/24/7/003. |

[1] |
Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589 |
[2] |
Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589 |
[3] |
Boris Hasselblatt, Yakov Pesin, Jörg Schmeling. Pointwise hyperbolicity implies uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2819-2827. doi: 10.3934/dcds.2014.34.2819 |
[4] |
Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048 |
[5] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[6] |
Luis Barreira, Claudia Valls. Growth rates and nonuniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 509-528. doi: 10.3934/dcds.2008.22.509 |
[7] |
Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36. |
[8] |
Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27. |
[9] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[10] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[11] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[12] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[13] |
David Damanik, Jake Fillman, Milivoje Lukic, William Yessen. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1009-1023. doi: 10.3934/dcdss.2016039 |
[14] |
Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641 |
[15] |
Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006 |
[16] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[17] |
Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029 |
[18] |
Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57 |
[19] |
Dawei Yang, Shaobo Gan, Lan Wen. Minimal non-hyperbolicity and index-completeness. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1349-1366. doi: 10.3934/dcds.2009.25.1349 |
[20] |
Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]