April  2022, 42(4): 1835-1853. doi: 10.3934/dcds.2021174

On $ L^1 $ estimates of solutions of compressible viscoelastic system

Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Ookayama 2-12-1, Tokyo 152-8551, Japan

Received  July 2021 Published  April 2022 Early access  November 2021

Fund Project: This work was partially supported by JSPS KAKENHI Grant Number 19J10056

We consider the large time behavior of solutions of compressible viscoelastic system around a motionless state in a three-dimensional whole space. We show that if the initial data belongs to $ W^{2,1} $, and is sufficiently small in $ H^4\cap L^1 $, the solutions grow in time at the same rate as $ t^{\frac{1}{2}} $ in $ L^1 $ due to diffusion wave phenomena of the system caused by interaction between sound wave, viscous diffusion and elastic wave.

Citation: Yusuke Ishigaki. On $ L^1 $ estimates of solutions of compressible viscoelastic system. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1835-1853. doi: 10.3934/dcds.2021174
References:
[1]

Q. Chen and G. Wu, The 3D compressible viscoelastic fluid in a bounded domain, Commun. Math. Sci., 16 (2018), 1303-1323.  doi: 10.4310/CMS.2018.v16.n5.a6.

[2]

M. E. Gurtin, An Introduction to Continuum Mechanics, Math. Sci. Eng., vol. 158, Academic Press, New York-London, 1981

[3]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.

[4]

X. Hu, Global existence of weak solutions to two dimensional compressible viscoelastic flows, J. Differential Equations, 265 (2018), 3130-3167.  doi: 10.1016/j.jde.2018.05.001.

[5]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.  doi: 10.1016/j.jde.2010.03.027.

[6]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.  doi: 10.1016/j.jde.2010.10.017.

[7]

X. Hu and G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815-2833.  doi: 10.1137/120892350.

[8]

X. Hu and W. Zhao, Global existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions, Arch. Ration. Mech. Anal., 235 (2020), 1177-1243.  doi: 10.1007/s00205-019-01443-z.

[9]

X. Hu and W. Zhao, Global existence for the compressible viscoelastic system with zero shear viscosity in three dimensions, J. Differential Equations, 268 (2020), 1658-1685.  doi: 10.1016/j.jde.2019.09.034.

[10]

Y. Ishigaki, Diffusion wave phenomena and $L^p$ decay estimates of solutions of compressible viscoelastic system, J. Differential Equations, 269 (2020), 11195-11230.  doi: 10.1016/j.jde.2020.07.020.

[11]

S. KawashimaA. Matsumura and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Commun. Math. Phys., 70 (1979), 97-124.  doi: 10.1007/BF01982349.

[12]

T. Kobayashi and Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equation, Pacific J. Math., 207 (2002), 199-234.  doi: 10.2140/pjm.2002.207.199.

[13]

Y. Li, R. Wei and Z. Yao, Optimal decay rates for the compressible viscoelastic flows, J. Math. Phys., 57 (2016), 111506, 8 pp. doi: 10.1063/1.4967975.

[14]

F.-H. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.

[15]

A. MatsumuraT. Nishida and P. Zhang, The initial value problems for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342. 

[16]

X. PanJ. Xu and P. Zhang, Global existence and optimal decay estimates of the compressible viscoelastic flows in $L^p$ critical spaces, Discrete Contin. Dyn. Syst., 39 (2019), 2021-2057.  doi: 10.3934/dcds.2019085.

[17]

J. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250 (2011), 848-865.  doi: 10.1016/j.jde.2010.07.026.

[18]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868.  doi: 10.1007/s00205-010-0351-5.

[19]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Methods Appl. Sci., 23 (2000), 203-226.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.

[20]

T. C. Sideris and B. Thomases, Global existence for 3D incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788.  doi: 10.1002/cpa.20049.

[21]

R. WeiY. Li and Z. Yao, Decay of the compressible viscoelastic flows, Commun. Pure Appl. Anal., 15 (2016), 1603-1624.  doi: 10.3934/cpaa.2016004.

[22]

G. WuZ. Gao and Z. Tan, Time decay rates for the compressible viscoelastic flows, J. Math. Anal. Appl., 452 (2017), 990-1004.  doi: 10.1016/j.jmaa.2017.03.044.

[23]

F. XuX. ZhangY. Wu and L. Liu, The optimal convergence rates for the multi-dimensional compressible viscoelastic flows, ZAMM Z. Angew. Math. Mech., 96 (2016), 1490-1504.  doi: 10.1002/zamm.201500095.

show all references

References:
[1]

Q. Chen and G. Wu, The 3D compressible viscoelastic fluid in a bounded domain, Commun. Math. Sci., 16 (2018), 1303-1323.  doi: 10.4310/CMS.2018.v16.n5.a6.

[2]

M. E. Gurtin, An Introduction to Continuum Mechanics, Math. Sci. Eng., vol. 158, Academic Press, New York-London, 1981

[3]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.  doi: 10.1512/iumj.1995.44.2003.

[4]

X. Hu, Global existence of weak solutions to two dimensional compressible viscoelastic flows, J. Differential Equations, 265 (2018), 3130-3167.  doi: 10.1016/j.jde.2018.05.001.

[5]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data, J. Differential Equations, 249 (2010), 1179-1198.  doi: 10.1016/j.jde.2010.03.027.

[6]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differential Equations, 250 (2011), 1200-1231.  doi: 10.1016/j.jde.2010.10.017.

[7]

X. Hu and G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815-2833.  doi: 10.1137/120892350.

[8]

X. Hu and W. Zhao, Global existence of compressible dissipative elastodynamics systems with zero shear viscosity in two dimensions, Arch. Ration. Mech. Anal., 235 (2020), 1177-1243.  doi: 10.1007/s00205-019-01443-z.

[9]

X. Hu and W. Zhao, Global existence for the compressible viscoelastic system with zero shear viscosity in three dimensions, J. Differential Equations, 268 (2020), 1658-1685.  doi: 10.1016/j.jde.2019.09.034.

[10]

Y. Ishigaki, Diffusion wave phenomena and $L^p$ decay estimates of solutions of compressible viscoelastic system, J. Differential Equations, 269 (2020), 11195-11230.  doi: 10.1016/j.jde.2020.07.020.

[11]

S. KawashimaA. Matsumura and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Commun. Math. Phys., 70 (1979), 97-124.  doi: 10.1007/BF01982349.

[12]

T. Kobayashi and Y. Shibata, Remark on the rate of decay of solutions to linearized compressible Navier-Stokes equation, Pacific J. Math., 207 (2002), 199-234.  doi: 10.2140/pjm.2002.207.199.

[13]

Y. Li, R. Wei and Z. Yao, Optimal decay rates for the compressible viscoelastic flows, J. Math. Phys., 57 (2016), 111506, 8 pp. doi: 10.1063/1.4967975.

[14]

F.-H. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.

[15]

A. MatsumuraT. Nishida and P. Zhang, The initial value problems for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342. 

[16]

X. PanJ. Xu and P. Zhang, Global existence and optimal decay estimates of the compressible viscoelastic flows in $L^p$ critical spaces, Discrete Contin. Dyn. Syst., 39 (2019), 2021-2057.  doi: 10.3934/dcds.2019085.

[17]

J. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differential Equations, 250 (2011), 848-865.  doi: 10.1016/j.jde.2010.07.026.

[18]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835-868.  doi: 10.1007/s00205-010-0351-5.

[19]

Y. Shibata, On the rate of decay of solutions to linear viscoelastic equation, Math. Methods Appl. Sci., 23 (2000), 203-226.  doi: 10.1002/(SICI)1099-1476(200002)23:3<203::AID-MMA111>3.0.CO;2-M.

[20]

T. C. Sideris and B. Thomases, Global existence for 3D incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 58 (2005), 750-788.  doi: 10.1002/cpa.20049.

[21]

R. WeiY. Li and Z. Yao, Decay of the compressible viscoelastic flows, Commun. Pure Appl. Anal., 15 (2016), 1603-1624.  doi: 10.3934/cpaa.2016004.

[22]

G. WuZ. Gao and Z. Tan, Time decay rates for the compressible viscoelastic flows, J. Math. Anal. Appl., 452 (2017), 990-1004.  doi: 10.1016/j.jmaa.2017.03.044.

[23]

F. XuX. ZhangY. Wu and L. Liu, The optimal convergence rates for the multi-dimensional compressible viscoelastic flows, ZAMM Z. Angew. Math. Mech., 96 (2016), 1490-1504.  doi: 10.1002/zamm.201500095.

[1]

Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure and Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959

[2]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[3]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[4]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[5]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[6]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure and Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[7]

Hai-Yang Jin. Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3595-3616. doi: 10.3934/dcds.2018155

[8]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks and Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[11]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[12]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic and Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[13]

Jie Zhao. Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1737-1755. doi: 10.3934/dcds.2020091

[14]

Ahmed Bonfoh, Cyril D. Enyi. Large time behavior of a conserved phase-field system. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1077-1105. doi: 10.3934/cpaa.2016.15.1077

[15]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[16]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[17]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[18]

Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102

[19]

Weike Wang, Yucheng Wang. Global existence and large time behavior for the chemotaxis–shallow water system in a bounded domain. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6379-6409. doi: 10.3934/dcds.2020284

[20]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (191)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]