doi: 10.3934/dcds.2021181
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence of minimizers for one-dimensional vectorial non-semicontinuous functionals with second order lagrangian

SISSA, Via Bonomea 265 - 34136 Trieste, Italy

* Corresponding author: Sandro Zagatti

Received  June 2021 Revised  October 2021 Early access November 2021

We study the minimum problem for functionals of the form
$ \begin{equation} \mathcal{F}(u) = \int_{I} f(x, u(x), u^ \prime(x), u^ {\prime\prime}(x))\,dx, \end{equation} $
where the integrand
$ f:I\times \mathbb{R}^m\times \mathbb{R}^m\times \mathbb{R}^m \to \mathbb{R} $
is not convex in the last variable. We provide an existence result assuming that the lower convex envelope
$ \overline{f} = \overline{f}(x,p,q,\xi) $
of
$ f $
with respect to
$ \xi $
is regular and enjoys a special dependence with respect to the i-th single components
$ p_i, q_i, \xi_i $
of the vector variables
$ p,q,\xi $
. More precisely, we assume that it is monotone in
$ p_i $
and that it satisfies suitable affinity properties with respect to
$ \xi_i $
on the set
$ \{f> \overline{f}\} $
and with respect to
$ q_i $
on the whole domain. We adopt refined versions of the integro-extremality method, extending analogous results already obtained for functionals with first order lagrangians. In addition we show that our hypotheses are nearly optimal, providing in such a way an almost necessary and sufficient condition for the solvability of this class of variational problems.
Citation: Sandro Zagatti. Existence of minimizers for one-dimensional vectorial non-semicontinuous functionals with second order lagrangian. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021181
References:
[1]

L. Cesari, Optimization - Theory and Applications, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, 1983.  Google Scholar

[3]

B. Dacorogna, Direct Method in the Calculus of Variations, second edition, Springer, New York, 2008.  Google Scholar

[4]

G. D. Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1972.  Google Scholar

[6]

K. Wang and Y. Li, Existence and monotonicity of minimizers of a nonconvex variational problem with a second-order lagrangian, Discrete Continuous Dynam. Systems, 25 (2009), 687-699.  doi: 10.3934/dcds.2009.25.687.  Google Scholar

[7]

S. Zagatti, Uniqueness and continuous dependence on boundary data for integro-extremal minimizer of the functional of the gradient, J. Convex Analysis, 14 (2007), 705-727.   Google Scholar

[8]

S. Zagatti, Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations, Calc. Var. and PDE's, 31 (2008), 511-519.  doi: 10.1007/s00526-007-0124-7.  Google Scholar

[9]

S. Zagatti, Minimization of non quasiconvex functionals by integro-extremization method, Discrete Continuous Dynam. Systems - A, 21 (2008), 625-641.  doi: 10.3934/dcds.2008.21.625.  Google Scholar

[10]

S. Zagatti, The minimum problem for one-dimensional non-semicontinuous functionals, to appear 2021., Google Scholar

show all references

References:
[1]

L. Cesari, Optimization - Theory and Applications, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, 1983.  Google Scholar

[3]

B. Dacorogna, Direct Method in the Calculus of Variations, second edition, Springer, New York, 2008.  Google Scholar

[4]

G. D. Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[5]

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1972.  Google Scholar

[6]

K. Wang and Y. Li, Existence and monotonicity of minimizers of a nonconvex variational problem with a second-order lagrangian, Discrete Continuous Dynam. Systems, 25 (2009), 687-699.  doi: 10.3934/dcds.2009.25.687.  Google Scholar

[7]

S. Zagatti, Uniqueness and continuous dependence on boundary data for integro-extremal minimizer of the functional of the gradient, J. Convex Analysis, 14 (2007), 705-727.   Google Scholar

[8]

S. Zagatti, Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations, Calc. Var. and PDE's, 31 (2008), 511-519.  doi: 10.1007/s00526-007-0124-7.  Google Scholar

[9]

S. Zagatti, Minimization of non quasiconvex functionals by integro-extremization method, Discrete Continuous Dynam. Systems - A, 21 (2008), 625-641.  doi: 10.3934/dcds.2008.21.625.  Google Scholar

[10]

S. Zagatti, The minimum problem for one-dimensional non-semicontinuous functionals, to appear 2021., Google Scholar

[1]

Ana Cristina Barroso, José Matias. Necessary and sufficient conditions for existence of solutions of a variational problem involving the curl. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 97-114. doi: 10.3934/dcds.2005.12.97

[2]

M. Soledad Aronna. Second order necessary and sufficient optimality conditions for singular solutions of partially-affine control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1233-1258. doi: 10.3934/dcdss.2018070

[3]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[4]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[5]

Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111

[6]

RazIye Mert, A. Zafer. A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Conference Publications, 2011, 2011 (Special) : 1061-1067. doi: 10.3934/proc.2011.2011.1061

[7]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 465-480. doi: 10.3934/jimo.2018051

[8]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[9]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[10]

Yoon Mo Jung, Taeuk Jeong, Sangwoon Yun. Non-convex TV denoising corrupted by impulse noise. Inverse Problems & Imaging, 2017, 11 (4) : 689-702. doi: 10.3934/ipi.2017032

[11]

Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047

[12]

Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687

[13]

Lihua Li, Yan Gao, Hongjie Wang. Second order sufficient optimality conditions for hybrid control problems with state jump. Journal of Industrial & Management Optimization, 2015, 11 (1) : 329-343. doi: 10.3934/jimo.2015.11.329

[14]

C. M. Elliott, B. Gawron, S. Maier-Paape, E. S. Van Vleck. Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration. Communications on Pure & Applied Analysis, 2006, 5 (1) : 181-200. doi: 10.3934/cpaa.2006.5.181

[15]

Alberto Cabada, João Fialho, Feliz Minhós. Non ordered lower and upper solutions to fourth order problems with functional boundary conditions. Conference Publications, 2011, 2011 (Special) : 209-218. doi: 10.3934/proc.2011.2011.209

[16]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[17]

Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[19]

Asadollah Aghajani. Regularity of extremal solutions of semilinear elliptic problems with non-convex nonlinearities on general domains. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3521-3530. doi: 10.3934/dcds.2017150

[20]

. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (29)
  • HTML views (29)
  • Cited by (0)

Other articles
by authors

[Back to Top]