We study the minimum problem for functionals of the form
$ \begin{equation} \mathcal{F}(u) = \int_{I} f(x, u(x), u^ \prime(x), u^ {\prime\prime}(x))\,dx, \end{equation} $
where the integrand $ f:I\times \mathbb{R}^m\times \mathbb{R}^m\times \mathbb{R}^m \to \mathbb{R} $ is not convex in the last variable. We provide an existence result assuming that the lower convex envelope $ \overline{f} = \overline{f}(x,p,q,\xi) $ of $ f $ with respect to $ \xi $ is regular and enjoys a special dependence with respect to the i-th single components $ p_i, q_i, \xi_i $ of the vector variables $ p,q,\xi $. More precisely, we assume that it is monotone in $ p_i $ and that it satisfies suitable affinity properties with respect to $ \xi_i $ on the set $ \{f> \overline{f}\} $ and with respect to $ q_i $ on the whole domain. We adopt refined versions of the integro-extremality method, extending analogous results already obtained for functionals with first order lagrangians. In addition we show that our hypotheses are nearly optimal, providing in such a way an almost necessary and sufficient condition for the solvability of this class of variational problems.
Citation: |
[1] |
L. Cesari, Optimization - Theory and Applications, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4613-8165-5.![]() ![]() ![]() |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, 1983.
![]() ![]() |
[3] |
B. Dacorogna, Direct Method in the Calculus of Variations, second edition, Springer, New York, 2008.
![]() ![]() |
[4] |
G. D. Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.
doi: 10.1007/978-1-4612-0327-8.![]() ![]() ![]() |
[5] |
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1972.
![]() ![]() |
[6] |
K. Wang and Y. Li, Existence and monotonicity of minimizers of a nonconvex variational problem with a second-order lagrangian, Discrete Continuous Dynam. Systems, 25 (2009), 687-699.
doi: 10.3934/dcds.2009.25.687.![]() ![]() ![]() |
[7] |
S. Zagatti, Uniqueness and continuous dependence on boundary data for integro-extremal minimizer of the functional of the gradient, J. Convex Analysis, 14 (2007), 705-727.
![]() ![]() |
[8] |
S. Zagatti, Minimizers of non convex scalar functionals and viscosity solutions of Hamilton-Jacobi equations, Calc. Var. and PDE's, 31 (2008), 511-519.
doi: 10.1007/s00526-007-0124-7.![]() ![]() ![]() |
[9] |
S. Zagatti, Minimization of non quasiconvex functionals by integro-extremization method, Discrete Continuous Dynam. Systems - A, 21 (2008), 625-641.
doi: 10.3934/dcds.2008.21.625.![]() ![]() ![]() |
[10] |
S. Zagatti, The minimum problem for one-dimensional non-semicontinuous functionals, to appear 2021.,
![]() |