doi: 10.3934/dcds.2021188
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains

Department of Mathematics, Indiana University, Bloomington, 831 E 3rd St, Bloomington, IN 47405, USA

*Corresponding author: Nam Q. Le

Received  April 2021 Early access December 2021

Fund Project: The author is supported by NSF grant DMS-2054686

By constructing explicit supersolutions, we obtain the optimal global Hölder regularity for several singular Monge-Ampère equations on general bounded open convex domains including those related to complete affine hyperbolic spheres, and proper affine hyperspheres. Our analysis reveals that certain singular-looking equations, such as $ \det D^2 u = |u|^{-n-2-k} (x\cdot Du -u)^{-k} $ with zero boundary data, have unexpected degenerate nature.

Citation: Nam Q. Le. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021188
References:
[1]

K. J. BöröczkyE. LutwakD. Yang and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852.  doi: 10.1090/S0894-0347-2012-00741-3.  Google Scholar

[2]

L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math., 131 (1990), 129-134.  doi: 10.2307/1971509.  Google Scholar

[3]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[4] E. Calabi, Complete affine hyperspheres. I. Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971), Academic Press, London, 1972.   Google Scholar
[5]

H. Chen and G. Huang, Existence and regularity of the solutions of some singular Monge-Ampère equations, J. Differential Equations, 267 (2019), 866-878.  doi: 10.1016/j.jde.2019.01.030.  Google Scholar

[6]

S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation det(2u = ∂xi∂xj) = F (x, u), Comm. Pure Appl. Math., 30 (1977), 41-68.  doi: 10.1002/cpa.3160300104.  Google Scholar

[7]

S. Y. Cheng and S.-T. Yau, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[8]

K.-S. Chou and X.-J. Wang, The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[9]

A. Figalli, The Monge-Ampère Equation and its Applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), 2017. doi: 10.4171/170.  Google Scholar

[10]

C. E. Gutiérrez, The Monge-Ampère Equation, Second edition. Birkhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0195-3.  Google Scholar

[11]

H. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differential Equations, 264 (2018), 6873-6890.  doi: 10.1016/j.jde.2018.01.051.  Google Scholar

[12]

H. Jian and Y. Li, A singular Monge-Ampère equation on unbounded domains, Sci. China Math., 61 (2018), 1473-1480.  doi: 10.1007/s11425-018-9351-1.  Google Scholar

[13]

H. Jian and X.-J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differential Geom., 93 (2013), 431-469.  doi: 10.4310/jdg/1361844941.  Google Scholar

[14]

N. Q. Le, The eigenvalue problem for the Monge-Ampère operator on general bounded convex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 1519-1559.   Google Scholar

[15]

F. H. Lin and L. Wang, A class of fully nonlinear elliptic equations with singularity at the boundary, J. Geom. Anal., 8 (1998), 583-598.  doi: 10.1007/BF02921713.  Google Scholar

[16]

P.-L. Lions, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl., 142 (1985), 263-275.  doi: 10.1007/BF01766596.  Google Scholar

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.  doi: 10.4310/jdg/1214454097.  Google Scholar

[18]

K. Tso, On a real Monge-Ampère functional, Invent. Math., 101 (1990), 425-448.  doi: 10.1007/BF01231510.  Google Scholar

show all references

References:
[1]

K. J. BöröczkyE. LutwakD. Yang and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852.  doi: 10.1090/S0894-0347-2012-00741-3.  Google Scholar

[2]

L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math., 131 (1990), 129-134.  doi: 10.2307/1971509.  Google Scholar

[3]

L. CaffarelliL. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math., 37 (1984), 369-402.  doi: 10.1002/cpa.3160370306.  Google Scholar

[4] E. Calabi, Complete affine hyperspheres. I. Symposia Mathematica, Vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971), Academic Press, London, 1972.   Google Scholar
[5]

H. Chen and G. Huang, Existence and regularity of the solutions of some singular Monge-Ampère equations, J. Differential Equations, 267 (2019), 866-878.  doi: 10.1016/j.jde.2019.01.030.  Google Scholar

[6]

S. Y. Cheng and S. T. Yau, On the regularity of the Monge-Ampère equation det(2u = ∂xi∂xj) = F (x, u), Comm. Pure Appl. Math., 30 (1977), 41-68.  doi: 10.1002/cpa.3160300104.  Google Scholar

[7]

S. Y. Cheng and S.-T. Yau, Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math., 39 (1986), 839-866.  doi: 10.1002/cpa.3160390606.  Google Scholar

[8]

K.-S. Chou and X.-J. Wang, The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[9]

A. Figalli, The Monge-Ampère Equation and its Applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), 2017. doi: 10.4171/170.  Google Scholar

[10]

C. E. Gutiérrez, The Monge-Ampère Equation, Second edition. Birkhäuser, Boston, 2001. doi: 10.1007/978-1-4612-0195-3.  Google Scholar

[11]

H. Jian and Y. Li, Optimal boundary regularity for a singular Monge-Ampère equation, J. Differential Equations, 264 (2018), 6873-6890.  doi: 10.1016/j.jde.2018.01.051.  Google Scholar

[12]

H. Jian and Y. Li, A singular Monge-Ampère equation on unbounded domains, Sci. China Math., 61 (2018), 1473-1480.  doi: 10.1007/s11425-018-9351-1.  Google Scholar

[13]

H. Jian and X.-J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differential Geom., 93 (2013), 431-469.  doi: 10.4310/jdg/1361844941.  Google Scholar

[14]

N. Q. Le, The eigenvalue problem for the Monge-Ampère operator on general bounded convex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci., 18 (2018), 1519-1559.   Google Scholar

[15]

F. H. Lin and L. Wang, A class of fully nonlinear elliptic equations with singularity at the boundary, J. Geom. Anal., 8 (1998), 583-598.  doi: 10.1007/BF02921713.  Google Scholar

[16]

P.-L. Lions, Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl., 142 (1985), 263-275.  doi: 10.1007/BF01766596.  Google Scholar

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.  doi: 10.4310/jdg/1214454097.  Google Scholar

[18]

K. Tso, On a real Monge-Ampère functional, Invent. Math., 101 (1990), 425-448.  doi: 10.1007/BF01231510.  Google Scholar

[1]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[2]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[3]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[5]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[6]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[7]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[8]

Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218

[9]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[10]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[11]

Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237

[12]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[13]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[14]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[15]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[16]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[17]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[18]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[19]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[20]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

2020 Impact Factor: 1.392

Article outline

[Back to Top]