• Previous Article
    Parameterized splitting theorems and bifurcations for potential operators, Part II: Applications to quasi-linear elliptic equations and systems
  • DCDS Home
  • This Issue
  • Next Article
    A dissipative logarithmic-Laplacian type of plate equation: Asymptotic profile and decay rates
doi: 10.3934/dcds.2021192
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

One component regularity criteria for the axially symmetric MHD-Boussinesq system

1. 

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, China

2. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China

*Corresponding author: Zijin Li

Received  January 2021 Revised  November 2021 Early access December 2021

Fund Project: Z. Li is supported by Natural Science Foundation of Jiangsu Province (No. BK20200803), National Natural Science Foundation of China (No. 12001285) and the Startup Foundation for Introducing Talent of NUIST (No. 2019r033). X. Pan is supported by Natural Science Foundation of Jiangsu Province (No. BK20180414) and National Natural Science Foundation of China (No. 11801268; No. 12031006)

In this paper, we consider regularity criteria of a class of 3D axially symmetric MHD-Boussinesq systems without magnetic resistivity or thermal diffusivity. Under some Prodi-Serrin type critical assumptions on the horizontal angular component of the velocity, we will prove that strong solutions of the axially symmetric MHD-Boussinesq system can be smoothly extended beyond the possible blow-up time $ T_\ast $ if the magnetic field contains only the horizontal swirl component. No a priori assumption on the magnetic field or the temperature fluctuation is imposed.

Citation: Zijin Li, Xinghong Pan. One component regularity criteria for the axially symmetric MHD-Boussinesq system. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021192
References:
[1]

H. AbidiT. Hmidi and S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dyn. Syst., 29 (2011), 737-756.  doi: 10.3934/dcds.2011.29.737.  Google Scholar

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbb{R}^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412.   Google Scholar

[3]

D. Bian and X. Pu, Global smooth axisymmetic solutions of the Boussinesq equations for magnetohydrodynamics convection, J. Math. Fluid Mech., 22 (2020), Article number: 12, 13pp. doi: 10.1007/s00021-019-0468-8.  Google Scholar

[4]

C. Cao and J. Wu, Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.  doi: 10.1007/s00205-013-0610-3.  Google Scholar

[5]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[6]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645-671.  doi: 10.1007/s002090100317.  Google Scholar

[7]

H. ChenD. Fang and T. Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, Discrete Contin. Dyn. Syst., 37 (2017), 1923-1939.  doi: 10.3934/dcds.2017081.  Google Scholar

[8]

Q. ChenC. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[9]

Q. Chen and Z. Zhang, Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations, J. Math. Anal. Appl., 331 (2007), 1384-1395.  doi: 10.1016/j.jmaa.2006.09.069.  Google Scholar

[10]

E. B. FabesB. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in ${L}^p$, Arch. Rational Mech. Anal., 45 (1972), 222-240.  doi: 10.1007/BF00281533.  Google Scholar

[11]

Y. Giga, Solutions for semilinear parabolic equations in ${L}^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[12]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[13]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1227-1246.  doi: 10.1016/j.anihpc.2010.06.001.  Google Scholar

[14]

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[15]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[16]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys., 214 (2000), 191-200.  doi: 10.1007/s002200000267.  Google Scholar

[17]

A. LariosE. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differential Equations, 255 (2013), 2636-2654.  doi: 10.1016/j.jde.2013.07.011.  Google Scholar

[18]

A. Larios and Y. Pei, On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion, J. Differential Equations, 263 (2017), 1419-1450.  doi: 10.1016/j.jde.2017.03.024.  Google Scholar

[19]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.  doi: 10.1016/j.jde.2015.04.017.  Google Scholar

[20] P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, CRC Press, 2002.  doi: 10.1201/9781420035674.  Google Scholar
[21]

F. LinL. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485.  doi: 10.1016/j.jde.2015.06.034.  Google Scholar

[22]

H. Liu, D. Bian and X. Pu, Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion, Z. Angew. Math. Phys., 70 (2019), Article number: 81, 19pp. doi: 10.1007/s00033-019-1126-y.  Google Scholar

[23]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, vol. 9 of Courant Lecture Notes in Mathematics, AMS/CIMS, 2003. doi: 10.1090/cln/009.  Google Scholar

[24]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Appl. Math. Sci., Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[25]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Comm. Math. Phys., 321 (2013), 33-67.  doi: 10.1007/s00220-013-1721-2.  Google Scholar

[26]

G. Mulone and S. Rionero, Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem, Arch. Ration. Mech. Anal., 166 (2003), 197-218.  doi: 10.1007/s00205-002-0230-9.  Google Scholar

[27]

X. Pan, Global regularity of solutions for the 3D non-resistive and non-diffusive MHD-Boussinesq system with axisymmetric data, preprint, arXiv: 1911.01550v2. Google Scholar

[28]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4650-3.  Google Scholar

[29]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.  doi: 10.1007/BF02410664.  Google Scholar

[30]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.  Google Scholar

[31]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.  Google Scholar

[32]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, (1963), 69–98.  Google Scholar

[33]

M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.  doi: 10.1002/cpa.3160410404.  Google Scholar

[34]

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237-254.  doi: 10.1007/BF02567922.  Google Scholar

show all references

References:
[1]

H. AbidiT. Hmidi and S. Keraani, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system, Discrete Contin. Dyn. Syst., 29 (2011), 737-756.  doi: 10.3934/dcds.2011.29.737.  Google Scholar

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbb{R}^n$, Chinese Ann. Math. Ser. B, 16 (1995), 407-412.   Google Scholar

[3]

D. Bian and X. Pu, Global smooth axisymmetic solutions of the Boussinesq equations for magnetohydrodynamics convection, J. Math. Fluid Mech., 22 (2020), Article number: 12, 13pp. doi: 10.1007/s00021-019-0468-8.  Google Scholar

[4]

C. Cao and J. Wu, Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985-1004.  doi: 10.1007/s00205-013-0610-3.  Google Scholar

[5]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.  doi: 10.1016/j.aim.2005.05.001.  Google Scholar

[6]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002), 645-671.  doi: 10.1007/s002090100317.  Google Scholar

[7]

H. ChenD. Fang and T. Zhang, Regularity of 3D axisymmetric Navier-Stokes equations, Discrete Contin. Dyn. Syst., 37 (2017), 1923-1939.  doi: 10.3934/dcds.2017081.  Google Scholar

[8]

Q. ChenC. Miao and Z. Zhang, On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations, Comm. Math. Phys., 284 (2008), 919-930.  doi: 10.1007/s00220-008-0545-y.  Google Scholar

[9]

Q. Chen and Z. Zhang, Regularity criterion of axisymmetric weak solutions to the 3D Navier-Stokes equations, J. Math. Anal. Appl., 331 (2007), 1384-1395.  doi: 10.1016/j.jmaa.2006.09.069.  Google Scholar

[10]

E. B. FabesB. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in ${L}^p$, Arch. Rational Mech. Anal., 45 (1972), 222-240.  doi: 10.1007/BF00281533.  Google Scholar

[11]

Y. Giga, Solutions for semilinear parabolic equations in ${L}^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[12]

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.  Google Scholar

[13]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1227-1246.  doi: 10.1016/j.anihpc.2010.06.001.  Google Scholar

[14]

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12.  doi: 10.3934/dcds.2005.12.1.  Google Scholar

[15]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[16]

H. Kozono and Y. Taniuchi, Limiting case of the Sobolev inequality in BMO, with application to the Euler equations, Comm. Math. Phys., 214 (2000), 191-200.  doi: 10.1007/s002200000267.  Google Scholar

[17]

A. LariosE. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differential Equations, 255 (2013), 2636-2654.  doi: 10.1016/j.jde.2013.07.011.  Google Scholar

[18]

A. Larios and Y. Pei, On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion, J. Differential Equations, 263 (2017), 1419-1450.  doi: 10.1016/j.jde.2017.03.024.  Google Scholar

[19]

Z. Lei, On axially symmetric incompressible magnetohydrodynamics in three dimensions, J. Differential Equations, 259 (2015), 3202-3215.  doi: 10.1016/j.jde.2015.04.017.  Google Scholar

[20] P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, CRC Press, 2002.  doi: 10.1201/9781420035674.  Google Scholar
[21]

F. LinL. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485.  doi: 10.1016/j.jde.2015.06.034.  Google Scholar

[22]

H. Liu, D. Bian and X. Pu, Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion, Z. Angew. Math. Phys., 70 (2019), Article number: 81, 19pp. doi: 10.1007/s00033-019-1126-y.  Google Scholar

[23]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, vol. 9 of Courant Lecture Notes in Mathematics, AMS/CIMS, 2003. doi: 10.1090/cln/009.  Google Scholar

[24]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Appl. Math. Sci., Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[25]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation, Comm. Math. Phys., 321 (2013), 33-67.  doi: 10.1007/s00220-013-1721-2.  Google Scholar

[26]

G. Mulone and S. Rionero, Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem, Arch. Ration. Mech. Anal., 166 (2003), 197-218.  doi: 10.1007/s00205-002-0230-9.  Google Scholar

[27]

X. Pan, Global regularity of solutions for the 3D non-resistive and non-diffusive MHD-Boussinesq system with axisymmetric data, preprint, arXiv: 1911.01550v2. Google Scholar

[28]

J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4612-4650-3.  Google Scholar

[29]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.  doi: 10.1007/BF02410664.  Google Scholar

[30]

X. RenJ. WuZ. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503-541.  doi: 10.1016/j.jfa.2014.04.020.  Google Scholar

[31]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9 (1962), 187-195.  doi: 10.1007/BF00253344.  Google Scholar

[32]

J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, (1963), 69–98.  Google Scholar

[33]

M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.  doi: 10.1002/cpa.3160410404.  Google Scholar

[34]

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237-254.  doi: 10.1007/BF02567922.  Google Scholar

[1]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[2]

Wojciech M. Zajączkowski. Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1447-1482. doi: 10.3934/cpaa.2019070

[3]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[4]

Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012

[5]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[6]

Jae-Myoung  Kim. Local regularity of the magnetohydrodynamics equations near the curved boundary. Communications on Pure & Applied Analysis, 2016, 15 (2) : 507-517. doi: 10.3934/cpaa.2016.15.507

[7]

Anthony Suen. Global regularity for the 3D compressible magnetohydrodynamics with general pressure. Discrete & Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022004

[8]

Dongho Chae, Shangkun Weng. Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5267-5285. doi: 10.3934/dcds.2016031

[9]

Xumin Gu. Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition. Communications on Pure & Applied Analysis, 2019, 18 (2) : 569-602. doi: 10.3934/cpaa.2019029

[10]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[11]

Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839

[12]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[13]

Motserrat Corbera, Jaume Llibre, Claudia Valls. Periodic orbits of perturbed non-axially symmetric potentials in 1:1:1 and 1:1:2 resonances. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2299-2337. doi: 10.3934/dcdsb.2018101

[14]

Yong Zhou, Jishan Fan. Regularity criteria for a magnetohydrodynamic-$\alpha$ model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 309-326. doi: 10.3934/cpaa.2011.10.309

[15]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[16]

Juan Dávila, Manuel Del Pino, Catalina Pesce, Juncheng Wei. Blow-up for the 3-dimensional axially symmetric harmonic map flow into $ S^2 $. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6913-6943. doi: 10.3934/dcds.2019237

[17]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[18]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

[19]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[20]

Yong Zhou, Jishan Fan. Regularity criteria of strong solutions to a problem of magneto-elastic interactions. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1697-1704. doi: 10.3934/cpaa.2010.9.1697

2020 Impact Factor: 1.392

Article outline

[Back to Top]