doi: 10.3934/dcds.2021196
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Erratum and addendum to "A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies" (Volume 40, Number 4, 2020, 2285-2313)

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Tokyo, Japan

Received  June 2021 Revised  September 2021 Early access December 2021

We add a lemma implicitly used in the proof of the forward Ergodic Closing Lemma in the paper "A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies" [Discrete Contin. Dyn. Syst., 40 (2020), 2285-2313].

Citation: Shuhei Hayashi. Erratum and addendum to "A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies" (Volume 40, Number 4, 2020, 2285-2313). Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021196
References:
[1]

S. Hayashi, A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies, Discrete Contin. Dyn. Syst., 40 (2020), 2285-2313.  doi: 10.3934/dcds.2020114.  Google Scholar

[2]

V. Pliss, A hypothesis due to Smale, Diff. Eq., 8 (1972), 203-214.   Google Scholar

[3]

C. Pugh and C. Robinson, The $C^1$ Closing Lemma, including Hamiltonians, Ergod Th. & Dynam. Sys., 3 (1983), 261-313.  doi: 10.1017/S0143385700001978.  Google Scholar

show all references

References:
[1]

S. Hayashi, A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies, Discrete Contin. Dyn. Syst., 40 (2020), 2285-2313.  doi: 10.3934/dcds.2020114.  Google Scholar

[2]

V. Pliss, A hypothesis due to Smale, Diff. Eq., 8 (1972), 203-214.   Google Scholar

[3]

C. Pugh and C. Robinson, The $C^1$ Closing Lemma, including Hamiltonians, Ergod Th. & Dynam. Sys., 3 (1983), 261-313.  doi: 10.1017/S0143385700001978.  Google Scholar

[1]

Shuhei Hayashi. A forward Ergodic Closing Lemma and the Entropy Conjecture for nonsingular endomorphisms away from tangencies. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2285-2313. doi: 10.3934/dcds.2020114

[2]

John Kieffer and En-hui Yang. Ergodic behavior of graph entropy. Electronic Research Announcements, 1997, 3: 11-16.

[3]

Lorenzo J. Díaz, Todd Fisher, M. J. Pacifico, José L. Vieitez. Entropy-expansiveness for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4195-4207. doi: 10.3934/dcds.2012.32.4195

[4]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[5]

Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169

[6]

Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29 (4) : 2819-2827. doi: 10.3934/era.2021015

[7]

Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371

[8]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[9]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[10]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[11]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[12]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[13]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[14]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[15]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[16]

Simon Lloyd. On the Closing Lemma problem for the torus. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 951-962. doi: 10.3934/dcds.2009.25.951

[17]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[18]

Nicolas Bedaride. Entropy of polyhedral billiard. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 89-102. doi: 10.3934/dcds.2007.19.89

[19]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

[20]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

2020 Impact Factor: 1.392

Article outline

[Back to Top]