• Previous Article
    Global $ C^2 $-estimates for smooth solutions to uniformly parabolic equations with Neumann boundary condition
  • DCDS Home
  • This Issue
  • Next Article
    A symmetric property in the enhanced common index jump theorem with applications to the closed geodesic problem
doi: 10.3934/dcds.2021199
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the multifractal spectrum of weighted Birkhoff averages

1. 

Budapest University of Technology and Economics, Department of Stochastics, MTA-BME Stochastics Research Group, P.O.Box 91, 1521 Budapest, Hungary

2. 

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland

3. 

Sorbonne Université, LPSM, 75005 Paris, France

*Corresponding author: Balázs Bárány

Received  September 2020 Revised  September 2021 Early access January 2022

Fund Project: Balázs Bárány acknowledges support from grants OTKA K123782 and OTKA FK134251. Michaƚ Rams was supported by National Science Centre grant 2019/33/B/ST1/00275 (Poland)

In this paper, we study the topological spectrum of weighted Birk–hoff averages over aperiodic and irreducible subshifts of finite type. We show that for a uniformly continuous family of potentials, the spectrum is continuous and concave over its domain. In case of typical weights with respect to some ergodic quasi-Bernoulli measure, we determine the spectrum. Moreover, in case of full shift and under the assumption that the potentials depend only on the first coordinate, we show that our result is applicable for regular weights, like Möbius sequence.

Citation: Balázs Bárány, Michaƚ Rams, Ruxi Shi. On the multifractal spectrum of weighted Birkhoff averages. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021199
References:
[1]

E. H. El AbdalaouiJ. Kuƚaga-PrzymusM. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37 (2017), 2899-2944.  doi: 10.3934/dcds.2017125.  Google Scholar

[2]

L. BarreiraB. Saussol and J. Schmeling, Distribution of frequencies of digits via multifractal analysis, J. Number Theory, 97 (2002), 410-438.  doi: 10.1016/S0022-314X(02)00003-3.  Google Scholar

[3]

L. BarreiraB. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl., 81 (2002), 67-91.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[4]

A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann., 110 (1935), 321-330.  doi: 10.1007/BF01448030.  Google Scholar

[5] C. J. Bishop and Y. Peres, Fractals in Probability and Analysis, Cambridge Studies in Advanced Mathematics, vol. 162, Cambridge University Press, Cambridge, 2017.  doi: 10.1017/9781316460238.  Google Scholar
[6]

F. Cellarosi and Y. Sinai, The Möbius function and statistical mechanics, Bull. Math. Sci., 1 (2011), 245-275.  doi: 10.1007/s13373-011-0011-6.  Google Scholar

[7]

H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser, 20 (1949), 31–36. doi: 10.1093/qmath/os-20.1.31.  Google Scholar

[8]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, 272. Springer-Verlag, New York, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[9]

A. Fan, Multifractal analysis of infinite products, J. Statist. Phys., 86 (1997), 1313-1336.  doi: 10.1007/BF02183625.  Google Scholar

[10]

A. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory Dynam. Systems, 39 (2019), 1275-1289.  doi: 10.1017/etds.2017.81.  Google Scholar

[11]

A. Fan, Multifractal analysis of weighted ergodic averages, Adv. Math., 377 (2021), 107488.  doi: 10.1016/j.aim.2020.107488.  Google Scholar

[12]

A. Fan and D. Feng, Analyse multifractale de la recurrence sur l'espace symbolique, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 629-632.  doi: 10.1016/S0764-4442(99)80091-3.  Google Scholar

[13]

A. Fan and D. Feng, On the distribution of long-term time averages on symbolic space, J. Statist. Phys., 99 (2000), 813-856.  doi: 10.1023/A:1018643512559.  Google Scholar

[14]

A. FanD. Feng and W. Jun, Recurrence, dimension and entropy, J. London Math. Soc., 64 (2001), 229-244.  doi: 10.1017/S0024610701002137.  Google Scholar

[15]

A. Fan and Y. Jiang, Oscillating sequences, MMA and MMLS flows and Sarnak's conjecture, Ergodic Theory Dynam. Systems, 38 (2018), 1709-1744.  doi: 10.1017/etds.2016.121.  Google Scholar

[16]

A. FanL. Liao and J. Peyriere, Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst., 21 (2008), 1103-1128.  doi: 10.3934/dcds.2008.21.1103.  Google Scholar

[17]

D. J. Feng, Equilibrium states for factor maps between subshifts, Adv. Math., 226 (2011), 2470-2502.  doi: 10.1016/j.aim.2010.09.012.  Google Scholar

[18]

D. FengK. Lau and J. Wu, Ergodic limits on the conformal repellers, Adv. Math., 169 (2002), 58-91.  doi: 10.1006/aima.2001.2054.  Google Scholar

[19]

S. FerencziJ. Kuƚaga-Przymus and M. Lemańczyk, Sarnak's conjecture: What's new, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, 2213 (2018), 163-235.   Google Scholar

[20]

K. Gelfert and M. Rams, The Lyapunov spectrum of some parabolic systems, Ergodic Theory Dynam. Systems, 29 (2009), 919-940.  doi: 10.1017/S0143385708080462.  Google Scholar

[21]

Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 309-338.  doi: 10.1016/S0246-0203(98)80014-9.  Google Scholar

[22]

H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.  doi: 10.1007/BF01695625.  Google Scholar

[23]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[24]

E. Olivier, Analyse multifractale de fonctions continues, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1171-1174.  doi: 10.1016/S0764-4442(98)80221-8.  Google Scholar

[25]

M. Rams, On some non-conformal fractals, Nonlinearity, 23 (2010), 2423-2428.  doi: 10.1088/0951-7715/23/10/004.  Google Scholar

[26]

V. A. Rohlin, Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys, 22 (1967), 1-52.   Google Scholar

[27]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/. Google Scholar

[28]

J. Schmeling, On the completeness of multifractal spectra, Ergodic Theory Dynam. Systems, 19 (1999), 1595-1616.  doi: 10.1017/S0143385799151988.  Google Scholar

[29]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.  Google Scholar

[30]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

show all references

References:
[1]

E. H. El AbdalaouiJ. Kuƚaga-PrzymusM. Lemańczyk and T. de la Rue, The Chowla and the Sarnak conjectures from ergodic theory point of view, Discrete Contin. Dyn. Syst., 37 (2017), 2899-2944.  doi: 10.3934/dcds.2017125.  Google Scholar

[2]

L. BarreiraB. Saussol and J. Schmeling, Distribution of frequencies of digits via multifractal analysis, J. Number Theory, 97 (2002), 410-438.  doi: 10.1016/S0022-314X(02)00003-3.  Google Scholar

[3]

L. BarreiraB. Saussol and J. Schmeling, Higher-dimensional multifractal analysis, J. Math. Pures Appl., 81 (2002), 67-91.  doi: 10.1016/S0021-7824(01)01228-4.  Google Scholar

[4]

A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann., 110 (1935), 321-330.  doi: 10.1007/BF01448030.  Google Scholar

[5] C. J. Bishop and Y. Peres, Fractals in Probability and Analysis, Cambridge Studies in Advanced Mathematics, vol. 162, Cambridge University Press, Cambridge, 2017.  doi: 10.1017/9781316460238.  Google Scholar
[6]

F. Cellarosi and Y. Sinai, The Möbius function and statistical mechanics, Bull. Math. Sci., 1 (2011), 245-275.  doi: 10.1007/s13373-011-0011-6.  Google Scholar

[7]

H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser, 20 (1949), 31–36. doi: 10.1093/qmath/os-20.1.31.  Google Scholar

[8]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Texts in Mathematics, 272. Springer-Verlag, New York, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[9]

A. Fan, Multifractal analysis of infinite products, J. Statist. Phys., 86 (1997), 1313-1336.  doi: 10.1007/BF02183625.  Google Scholar

[10]

A. Fan, Weighted Birkhoff ergodic theorem with oscillating weights, Ergodic Theory Dynam. Systems, 39 (2019), 1275-1289.  doi: 10.1017/etds.2017.81.  Google Scholar

[11]

A. Fan, Multifractal analysis of weighted ergodic averages, Adv. Math., 377 (2021), 107488.  doi: 10.1016/j.aim.2020.107488.  Google Scholar

[12]

A. Fan and D. Feng, Analyse multifractale de la recurrence sur l'espace symbolique, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 629-632.  doi: 10.1016/S0764-4442(99)80091-3.  Google Scholar

[13]

A. Fan and D. Feng, On the distribution of long-term time averages on symbolic space, J. Statist. Phys., 99 (2000), 813-856.  doi: 10.1023/A:1018643512559.  Google Scholar

[14]

A. FanD. Feng and W. Jun, Recurrence, dimension and entropy, J. London Math. Soc., 64 (2001), 229-244.  doi: 10.1017/S0024610701002137.  Google Scholar

[15]

A. Fan and Y. Jiang, Oscillating sequences, MMA and MMLS flows and Sarnak's conjecture, Ergodic Theory Dynam. Systems, 38 (2018), 1709-1744.  doi: 10.1017/etds.2016.121.  Google Scholar

[16]

A. FanL. Liao and J. Peyriere, Generic points in systems of specification and Banach valued Birkhoff ergodic average, Discrete Contin. Dyn. Syst., 21 (2008), 1103-1128.  doi: 10.3934/dcds.2008.21.1103.  Google Scholar

[17]

D. J. Feng, Equilibrium states for factor maps between subshifts, Adv. Math., 226 (2011), 2470-2502.  doi: 10.1016/j.aim.2010.09.012.  Google Scholar

[18]

D. FengK. Lau and J. Wu, Ergodic limits on the conformal repellers, Adv. Math., 169 (2002), 58-91.  doi: 10.1006/aima.2001.2054.  Google Scholar

[19]

S. FerencziJ. Kuƚaga-Przymus and M. Lemańczyk, Sarnak's conjecture: What's new, Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics, 2213 (2018), 163-235.   Google Scholar

[20]

K. Gelfert and M. Rams, The Lyapunov spectrum of some parabolic systems, Ergodic Theory Dynam. Systems, 29 (2009), 919-940.  doi: 10.1017/S0143385708080462.  Google Scholar

[21]

Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist., 34 (1998), 309-338.  doi: 10.1016/S0246-0203(98)80014-9.  Google Scholar

[22]

H. B. Keynes and J. B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory, 3 (1969), 51-59.  doi: 10.1007/BF01695625.  Google Scholar

[23]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[24]

E. Olivier, Analyse multifractale de fonctions continues, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1171-1174.  doi: 10.1016/S0764-4442(98)80221-8.  Google Scholar

[25]

M. Rams, On some non-conformal fractals, Nonlinearity, 23 (2010), 2423-2428.  doi: 10.1088/0951-7715/23/10/004.  Google Scholar

[26]

V. A. Rohlin, Lectures on the entropy theory of measure-preserving transformations, Russian Math. Surveys, 22 (1967), 1-52.   Google Scholar

[27]

P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, http://publications.ias.edu/sarnak/. Google Scholar

[28]

J. Schmeling, On the completeness of multifractal spectra, Ergodic Theory Dynam. Systems, 19 (1999), 1595-1616.  doi: 10.1017/S0143385799151988.  Google Scholar

[29]

F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems, 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.  Google Scholar

[30]

P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982.  Google Scholar

[1]

Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[2]

Todd Young. Asymptotic measures and distributions of Birkhoff averages with respect to Lebesgue measure. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 359-378. doi: 10.3934/dcds.2003.9.359

[3]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[4]

Andreas Strömbergsson. On the deviation of ergodic averages for horocycle flows. Journal of Modern Dynamics, 2013, 7 (2) : 291-328. doi: 10.3934/jmd.2013.7.291

[5]

Serge Tabachnikov. Birkhoff billiards are insecure. Discrete & Continuous Dynamical Systems, 2009, 23 (3) : 1035-1040. doi: 10.3934/dcds.2009.23.1035

[6]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[7]

Zoltán Buczolich, Balázs Maga, Ryo Moore. Generic Birkhoff spectra. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6649-6679. doi: 10.3934/dcds.2020131

[8]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[9]

Bin Cheng, Alex Mahalov. Time-averages of fast oscillatory systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1151-1162. doi: 10.3934/dcdss.2013.6.1151

[10]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[11]

Bo Tan, Bao-Wei Wang, Jun Wu, Jian Xu. Localized Birkhoff average in beta dynamical systems. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2547-2564. doi: 10.3934/dcds.2013.33.2547

[12]

Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055

[13]

Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017

[14]

Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1103-1128. doi: 10.3934/dcds.2008.21.1103

[15]

Thomas Dauer, Marlies Gerber. Generic absence of finite blocking for interior points of Birkhoff billiards. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4871-4893. doi: 10.3934/dcds.2016010

[16]

Jon Chaika, Alex Eskin. Every flat surface is Birkhoff and Oseledets generic in almost every direction. Journal of Modern Dynamics, 2015, 9: 1-23. doi: 10.3934/jmd.2015.9.1

[17]

Luca Biasco, Laura Di Gregorio. Periodic solutions of Birkhoff-Lewis type for the nonlinear wave equation. Conference Publications, 2007, 2007 (Special) : 102-109. doi: 10.3934/proc.2007.2007.102

[18]

Ana-Maria Acu, Laura Hodis, Ioan Rasa. Multivariate weighted kantorovich operators. Mathematical Foundations of Computing, 2020, 3 (2) : 117-124. doi: 10.3934/mfc.2020009

[19]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[20]

Jin-Cheng Jiang, Chengbo Wang, Xin Yu. Generalized and weighted Strichartz estimates. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1723-1752. doi: 10.3934/cpaa.2012.11.1723

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (34)
  • HTML views (29)
  • Cited by (0)

Other articles
by authors

[Back to Top]