• Previous Article
    Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains
  • DCDS Home
  • This Issue
  • Next Article
    Fujita type results for quasilinear parabolic inequalities with nonlocal terms
doi: 10.3934/dcds.2021201
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles

1. 

Department of Mathematics, Nanjing University, Nanjing 210093, China

2. 

Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

3. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300017, China

*Corresponding author: Jiahao Xu, 178881559@qq.com

Received  May 2021 Revised  November 2021 Early access January 2022

Fund Project: The first author is supported by NNSF of China (Grants 11771205). The second author was supported by the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grants 2021qntd21)

For $ C^2 $ cos-type potentials, large coupling constants, and fixed $ Diophantine $ frequency, we show that the density of the spectral points associated with the Schrödinger operator is larger than 0. In other words, for every fixed spectral point $ E $, $ \liminf\limits_{\epsilon\to 0}\frac{|(E-\epsilon,E+\epsilon)\bigcap\Sigma_{\alpha,\lambda\upsilon}|}{2\epsilon} = \beta $, where $ \beta\in [\frac{1}{2},1] $. Our approach is a further improvement on the papers [15] and [17].

Citation: Fan Wu, Linlin Fu, Jiahao Xu. On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021201
References:
[1]

A. AvilaJ. Bochi and D. Damanik, Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts, Duke Math. J., 146 (2009), 253-280.  doi: 10.1215/00127094-2008-065.  Google Scholar

[2]

A. AvilaJ. Bochi and D. Damanik, Opening gaps in the spectrum of strictly ergodic schrödinger operators, J. Eur. Math. Soc., 14 (2012), 61-106.  doi: 10.4171/JEMS/296.  Google Scholar

[3]

A. AvilaD. Damanik and Z. Zhang, Singular density of states measure for subshift and quasi-periodic Schrödinger operators, Comm. Math. Phys., 330 (2014), 469-498.  doi: 10.1007/s00220-014-1968-2.  Google Scholar

[4]

A. Avila and S. Jitomirskaya, The ten martini problem, Ann. of Math., 170 (2009), 303-342.  doi: 10.4007/annals.2009.170.303.  Google Scholar

[5]

A. Avila, J. You and Q. Zhou, Dry ten Martini problem in the non-critical case, preprint. Google Scholar

[6]

D. Damanik and D. Lenz, Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials, J. Math. Pures Appl., 85 (2006), 671-686.  doi: 10.1016/j.matpur.2005.11.002.  Google Scholar

[7]

D. Damanik and D. Lenz, A condition of boshernitzan and uniform convergence in the multiplicative ergodic theorem, Duke Math. J., 133 (2006), 95-123.  doi: 10.1215/S0012-7094-06-13314-8.  Google Scholar

[8]

L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., 146 (1992), 447-482.  doi: 10.1007/BF02097013.  Google Scholar

[9]

L. Ge, J. Y and X. Zhao, Arithmetic version of Anderson localization for quasiperiodic Schrödinger Operators with even cosine type potentials, arXiv: 2107.08547, 2021 Google Scholar

[10]

M. Goldstein and W. Schlag, On resonances and the formation of gaps in the spectrum of quaiperiodic Schrödinger equations, Ann. of Math., 173 (2011), 337-475.  doi: 10.4007/annals.2011.173.1.9.  Google Scholar

[11]

R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations, 61 (1986), 54-78.  doi: 10.1016/0022-0396(86)90125-7.  Google Scholar

[12]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 90 (1983), 317-318.  doi: 10.1007/BF01205510.  Google Scholar

[13]

B. Simon, Almost periodic Schrödinger operators: A review, Adv. in Appl. Math., 3 (1982), 463-490.  doi: 10.1016/S0196-8858(82)80018-3.  Google Scholar

[14]

Y. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys., 46 (1987), 861-909.  doi: 10.1007/BF01011146.  Google Scholar

[15]

J. Xu, L. Ge and Y. Wang, The Hölder continuity of Lyapunov exponents for a class of cos-type quasiperiodic Schrödinger cocycles, arXiv: 2006.03381v1, 2020. Google Scholar

[16]

Y. Wang and Z. Zhang, Uniform positivity and continuity of lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.  doi: 10.1016/j.jfa.2015.01.003.  Google Scholar

[17]

Y. Wang and Z. Zhang, Cantor spectrum for a class of $C^2$ quasiperiodic Schrödinger operators, Int. Math. Res. Not., 2017 (2017), 2300-2336.  doi: 10.1093/imrn/rnw079.  Google Scholar

[18]

L. S. Young, Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.  doi: 10.1017/S0143385797079170.  Google Scholar

[19]

Z. Zhang, Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrdinger operators, J. Spectr. Theory, 10 (2020), 1471-1517.  doi: 10.4171/JST/333.  Google Scholar

show all references

References:
[1]

A. AvilaJ. Bochi and D. Damanik, Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts, Duke Math. J., 146 (2009), 253-280.  doi: 10.1215/00127094-2008-065.  Google Scholar

[2]

A. AvilaJ. Bochi and D. Damanik, Opening gaps in the spectrum of strictly ergodic schrödinger operators, J. Eur. Math. Soc., 14 (2012), 61-106.  doi: 10.4171/JEMS/296.  Google Scholar

[3]

A. AvilaD. Damanik and Z. Zhang, Singular density of states measure for subshift and quasi-periodic Schrödinger operators, Comm. Math. Phys., 330 (2014), 469-498.  doi: 10.1007/s00220-014-1968-2.  Google Scholar

[4]

A. Avila and S. Jitomirskaya, The ten martini problem, Ann. of Math., 170 (2009), 303-342.  doi: 10.4007/annals.2009.170.303.  Google Scholar

[5]

A. Avila, J. You and Q. Zhou, Dry ten Martini problem in the non-critical case, preprint. Google Scholar

[6]

D. Damanik and D. Lenz, Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials, J. Math. Pures Appl., 85 (2006), 671-686.  doi: 10.1016/j.matpur.2005.11.002.  Google Scholar

[7]

D. Damanik and D. Lenz, A condition of boshernitzan and uniform convergence in the multiplicative ergodic theorem, Duke Math. J., 133 (2006), 95-123.  doi: 10.1215/S0012-7094-06-13314-8.  Google Scholar

[8]

L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Comm. Math. Phys., 146 (1992), 447-482.  doi: 10.1007/BF02097013.  Google Scholar

[9]

L. Ge, J. Y and X. Zhao, Arithmetic version of Anderson localization for quasiperiodic Schrödinger Operators with even cosine type potentials, arXiv: 2107.08547, 2021 Google Scholar

[10]

M. Goldstein and W. Schlag, On resonances and the formation of gaps in the spectrum of quaiperiodic Schrödinger equations, Ann. of Math., 173 (2011), 337-475.  doi: 10.4007/annals.2011.173.1.9.  Google Scholar

[11]

R. Johnson, Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients, J. Differential Equations, 61 (1986), 54-78.  doi: 10.1016/0022-0396(86)90125-7.  Google Scholar

[12]

R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 90 (1983), 317-318.  doi: 10.1007/BF01205510.  Google Scholar

[13]

B. Simon, Almost periodic Schrödinger operators: A review, Adv. in Appl. Math., 3 (1982), 463-490.  doi: 10.1016/S0196-8858(82)80018-3.  Google Scholar

[14]

Y. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Statist. Phys., 46 (1987), 861-909.  doi: 10.1007/BF01011146.  Google Scholar

[15]

J. Xu, L. Ge and Y. Wang, The Hölder continuity of Lyapunov exponents for a class of cos-type quasiperiodic Schrödinger cocycles, arXiv: 2006.03381v1, 2020. Google Scholar

[16]

Y. Wang and Z. Zhang, Uniform positivity and continuity of lyapunov exponents for a class of $C^2$ quasiperiodic Schrödinger cocycles, J. Funct. Anal., 268 (2015), 2525-2585.  doi: 10.1016/j.jfa.2015.01.003.  Google Scholar

[17]

Y. Wang and Z. Zhang, Cantor spectrum for a class of $C^2$ quasiperiodic Schrödinger operators, Int. Math. Res. Not., 2017 (2017), 2300-2336.  doi: 10.1093/imrn/rnw079.  Google Scholar

[18]

L. S. Young, Lyapunov exponents for some quasi-periodic cocycles, Ergodic Theory Dynam. Systems, 17 (1997), 483-504.  doi: 10.1017/S0143385797079170.  Google Scholar

[19]

Z. Zhang, Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrdinger operators, J. Spectr. Theory, 10 (2020), 1471-1517.  doi: 10.4171/JST/333.  Google Scholar

[1]

Linlin Fu, Jiahao Xu. A new proof of continuity of Lyapunov exponents for a class of $ C^2 $ quasiperiodic Schrödinger cocycles without LDT. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2915-2931. doi: 10.3934/dcds.2019121

[2]

Brahim Alouini. Asymptotic behaviour of the solutions for a weakly damped anisotropic sixth-order Schrödinger type equation in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 45-72. doi: 10.3934/dcdsb.2021032

[3]

Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094

[4]

Yongkuan Cheng, Yaotian Shen. Generalized quasilinear Schrödinger equations with concave functions $ l(s^2) $. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1311-1343. doi: 10.3934/dcds.2019056

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[6]

Ruoci Sun. Filtering the $ L^2- $critical focusing Schrödinger equation. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5973-5990. doi: 10.3934/dcds.2020255

[7]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[8]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[9]

Valeria Banica, Luis Vega. Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb S^2$. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1317-1329. doi: 10.3934/cpaa.2018064

[10]

Shaoming Guo, Xianfeng Ren, Baoxiang Wang. Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4207-4253. doi: 10.3934/dcds.2021034

[11]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[12]

Yi Peng, Jinbiao Wu. On the $ BMAP_1, BMAP_2/PH/g, c $ retrial queueing system. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3373-3391. doi: 10.3934/jimo.2020124

[13]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[14]

Pierre Gervais. A spectral study of the linearized Boltzmann operator in $ L^2 $-spaces with polynomial and Gaussian weights. Kinetic & Related Models, 2021, 14 (4) : 725-747. doi: 10.3934/krm.2021022

[15]

James Montaldi, Amna Shaddad. Generalized point vortex dynamics on $ \mathbb{CP} ^2 $. Journal of Geometric Mechanics, 2019, 11 (4) : 601-619. doi: 10.3934/jgm.2019030

[16]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[17]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[18]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[19]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[20]

Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154

2020 Impact Factor: 1.392

Article outline

[Back to Top]