doi: 10.3934/dcds.2021202
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields

Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea

*Corresponding author: Bora Moon

Received  May 2021 Revised  October 2021 Early access January 2022

Fund Project: The work of J. Kim and B. Moon was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2020R1A4A3079066) and the work of B. Moon was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2019R1I1A1A01059585)

We present two types of the hydrodynamic limit of the nonlinear Schrödinger-Chern-Simons (SCS) system. We consider two different scalings of the SCS system and show that each SCS system asymptotically converges towards the compressible and incompressible Euler system, coupled with the Chern-Simons equations and Poisson equation respectively, as the scaled Planck constant converges to 0. Our method is based on the modulated energy estimate. In the case of compressible limit, we observe that the classical theory of relative entropy method can be applied to show the hydrodynamic limit, with the additional quantum correction term. On the other hand, for the incompressible limit, we directly estimate the modulated energy to derive the desired asymptotic convergence.

Citation: Jeongho Kim, Bora Moon. Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021202
References:
[1]

C. BardosF. Golse and C. D. Levermore, The acoustic limit for the Boltzmann equation, Arch. Ration. Mech. Anal., 153 (2000), 177-204.  doi: 10.1007/s002050000080.  Google Scholar

[2]

L. BergéA. de Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.  Google Scholar

[3]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics. Gauthier–Villars, 2000.  Google Scholar

[4]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.  Google Scholar

[5]

Z. F. EzawaM. Hotta and A. Iwazaki, Breathing vortex solitons in nonrelativistic Chern-Simons gauge theory, Phys. Rev. Lett., 67 (1991), 411-414.  doi: 10.1103/PhysRevLett.67.411.  Google Scholar

[6]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161.  doi: 10.1007/s00222-003-0316-5.  Google Scholar

[7]

P. GoncalvesC. Landim and C. Tonielli, Hydrodynamic limit for a particle system with degenerate rates, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 887-909.  doi: 10.1214/09-AIHP210.  Google Scholar

[8]

T. GoudinP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.  doi: 10.1512/iumj.2004.53.2509.  Google Scholar

[9]

H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), Article ID 590653. doi: 10.1155/2013/590653.  Google Scholar

[10]

R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[11]

R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.  doi: 10.1103/PhysRevLett.64.2969.  Google Scholar

[12]

M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.  Google Scholar

[13]

C. Landim, Hydrodynamic limit of interacting particle systems,, School and Conference on Probability Theory, ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, (2004), 57–100.  Google Scholar

[14]

C. C. Lee and T. C. Lin, Incompressible and compressible limits of two-component Gross-Pitaevskii equations with rotating fields and trap potentials, J. Math. Phys., 49 (2008), 043517.  doi: 10.1063/1.2912716.  Google Scholar

[15]

H. L. Li and C. K. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model of semiconductors, Comm. Math. Phys., 256 (2005), 195-212.  doi: 10.1007/s00220-005-1316-7.  Google Scholar

[16]

Z. M. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differential Equations, 264 (2018), 2553-2597.  doi: 10.1016/j.jde.2017.10.026.  Google Scholar

[17] P.-L. Lions, Mathematical Topics in Fluid Mechanics, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[18]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[19]

B. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.  doi: 10.4171/RMI/898.  Google Scholar

[20]

B. LiuP. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger equation, Int. Math. Res. Not. IMRN, 2014 (2014), 6341-6398.  doi: 10.1093/imrn/rnt161.  Google Scholar

[21]

C.-K. Lin and K.-C. Wu, Hydrodynamic limits of the nonlinear Klein-Gordon equation, J. Math. Pures Appl., 98 (2012), 328-345.  doi: 10.1016/j.matpur.2012.02.002.  Google Scholar

[22]

T. C. Lin and P. Zhang, Incompressible and compressible limits of coupled systems of nonlinear Schrödinger equations, Commun. Math. Phys., 266 (2006), 547-569.  doi: 10.1007/s00220-006-0061-x.  Google Scholar

[23]

E. Madelung, Quantentheorie in hydrodynamischer form, Z. Physik, 40 (1927), 322.   Google Scholar

[24]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[25]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press. 2002.  Google Scholar

[26]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.  Google Scholar

[27]

M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 27 (2002), 2311-2331.  doi: 10.1081/PDE-120016159.  Google Scholar

[28]

L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Rational Mech. Anal., 166 (2003), 47-80.  doi: 10.1007/s00205-002-0228-3.  Google Scholar

[29]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy methods, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 705-744.  doi: 10.1016/j.anihpc.2008.01.001.  Google Scholar

[30]

H. T. Yau, Relative entropy and hydrodynamics of Ginzberg-Landau models, Lett. Math. Phys., 22 (1991), 63-80.  doi: 10.1007/BF00400379.  Google Scholar

show all references

References:
[1]

C. BardosF. Golse and C. D. Levermore, The acoustic limit for the Boltzmann equation, Arch. Ration. Mech. Anal., 153 (2000), 177-204.  doi: 10.1007/s002050000080.  Google Scholar

[2]

L. BergéA. de Bouard and J.-C. Saut, Blowing up time-dependent solutions of the planar, Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.  Google Scholar

[3]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic Equations and Asymptotic Theory, Series in Applied Mathematics. Gauthier–Villars, 2000.  Google Scholar

[4]

C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal., 70 (1979), 167-179.  doi: 10.1007/BF00250353.  Google Scholar

[5]

Z. F. EzawaM. Hotta and A. Iwazaki, Breathing vortex solitons in nonrelativistic Chern-Simons gauge theory, Phys. Rev. Lett., 67 (1991), 411-414.  doi: 10.1103/PhysRevLett.67.411.  Google Scholar

[6]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161.  doi: 10.1007/s00222-003-0316-5.  Google Scholar

[7]

P. GoncalvesC. Landim and C. Tonielli, Hydrodynamic limit for a particle system with degenerate rates, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 887-909.  doi: 10.1214/09-AIHP210.  Google Scholar

[8]

T. GoudinP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. II Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536.  doi: 10.1512/iumj.2004.53.2509.  Google Scholar

[9]

H. Huh, Energy solution to the Chern-Simons-Schrödinger equations, Abstr. Appl. Anal., 2013 (2013), Article ID 590653. doi: 10.1155/2013/590653.  Google Scholar

[10]

R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[11]

R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.  doi: 10.1103/PhysRevLett.64.2969.  Google Scholar

[12]

M.-J. Kang and A. Vasseur, Asymptotic analysis of Vlasov-type equations under strong local alignment regime, Math. Models Methods Appl. Sci., 25 (2015), 2153-2173.  doi: 10.1142/S0218202515500542.  Google Scholar

[13]

C. Landim, Hydrodynamic limit of interacting particle systems,, School and Conference on Probability Theory, ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, (2004), 57–100.  Google Scholar

[14]

C. C. Lee and T. C. Lin, Incompressible and compressible limits of two-component Gross-Pitaevskii equations with rotating fields and trap potentials, J. Math. Phys., 49 (2008), 043517.  doi: 10.1063/1.2912716.  Google Scholar

[15]

H. L. Li and C. K. Lin, Zero Debye length asymptotic of the quantum hydrodynamic model of semiconductors, Comm. Math. Phys., 256 (2005), 195-212.  doi: 10.1007/s00220-005-1316-7.  Google Scholar

[16]

Z. M. Lim, Large data well-posedness in the energy space of the Chern-Simons-Schrödinger system, J. Differential Equations, 264 (2018), 2553-2597.  doi: 10.1016/j.jde.2017.10.026.  Google Scholar

[17] P.-L. Lions, Mathematical Topics in Fluid Mechanics, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[18]

P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585-627.  doi: 10.1016/S0021-7824(98)80139-6.  Google Scholar

[19]

B. Liu and P. Smith, Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.  doi: 10.4171/RMI/898.  Google Scholar

[20]

B. LiuP. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger equation, Int. Math. Res. Not. IMRN, 2014 (2014), 6341-6398.  doi: 10.1093/imrn/rnt161.  Google Scholar

[21]

C.-K. Lin and K.-C. Wu, Hydrodynamic limits of the nonlinear Klein-Gordon equation, J. Math. Pures Appl., 98 (2012), 328-345.  doi: 10.1016/j.matpur.2012.02.002.  Google Scholar

[22]

T. C. Lin and P. Zhang, Incompressible and compressible limits of coupled systems of nonlinear Schrödinger equations, Commun. Math. Phys., 266 (2006), 547-569.  doi: 10.1007/s00220-006-0061-x.  Google Scholar

[23]

E. Madelung, Quantentheorie in hydrodynamischer form, Z. Physik, 40 (1927), 322.   Google Scholar

[24]

A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, 53. Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4612-1116-7.  Google Scholar

[25]

A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press. 2002.  Google Scholar

[26]

A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Commun. Math. Phys., 281 (2008), 573-596.  doi: 10.1007/s00220-008-0523-4.  Google Scholar

[27]

M. Puel, Convergence of the Schrödinger-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 27 (2002), 2311-2331.  doi: 10.1081/PDE-120016159.  Google Scholar

[28]

L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Rational Mech. Anal., 166 (2003), 47-80.  doi: 10.1007/s00205-002-0228-3.  Google Scholar

[29]

L. Saint-Raymond, Hydrodynamic limits: Some improvements of the relative entropy methods, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 705-744.  doi: 10.1016/j.anihpc.2008.01.001.  Google Scholar

[30]

H. T. Yau, Relative entropy and hydrodynamics of Ginzberg-Landau models, Lett. Math. Phys., 22 (1991), 63-80.  doi: 10.1007/BF00400379.  Google Scholar

[1]

José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks & Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023

[2]

Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119

[3]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1967-1981. doi: 10.3934/dcdss.2021008

[4]

Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237

[5]

Jincai Kang, Chunlei Tang. Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1931-1944. doi: 10.3934/dcdss.2021016

[6]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[7]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[8]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[9]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

[10]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[11]

Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193

[12]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[13]

Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286

[14]

Boling Guo, Yan Lv, Wei Wang. Schrödinger limit of weakly dissipative stochastic Klein--Gordon--Schrödinger equations and large deviations. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2795-2818. doi: 10.3934/dcds.2014.34.2795

[15]

Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689

[16]

Kwangseok Choe, Hyungjin Huh. Chern-Simons gauged sigma model into $ \mathbb{H}^2 $ and its self-dual equations. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4613-4646. doi: 10.3934/dcds.2019189

[17]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[18]

Jean Dolbeault, Giuseppe Toscani. Fast diffusion equations: Matching large time asymptotics by relative entropy methods. Kinetic & Related Models, 2011, 4 (3) : 701-716. doi: 10.3934/krm.2011.4.701

[19]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[20]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

2020 Impact Factor: 1.392

Article outline

[Back to Top]