-
Previous Article
Higher dimensional topology and generalized Hopf bifurcations for discrete dynamical systems
- DCDS Home
- This Issue
-
Next Article
Hydrodynamic limits of the nonlinear Schrödinger equation with the Chern-Simons gauge fields
On the one dimensional cubic NLS in a critical space
BCAM - Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Basque Country - Spain |
In this note we study the initial value problem in a critical space for the one dimensional Schrödinger equation with a cubic non-linearity and under some smallness conditions. In particular the initial data is given by a sequence of Dirac deltas with different amplitudes but equispaced. This choice is motivated by a related geometrical problem; the one describing the flow of curves in three dimensions moving in the direction of the binormal with a velocity that is given by the curvature.
References:
[1] |
V. Banica and L. Vega,
Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. (JEMS), 14 (2012), 209-253.
doi: 10.4171/JEMS/300. |
[2] |
V. Banica and L. Vega,
Stability of the self-similar dynamics of a vortex filament, Arch. Ration. Mech. Anal., 210 (2013), 673-712.
doi: 10.1007/s00205-013-0660-6. |
[3] |
V. Banica and L. Vega, Evolution of polygonal lines by the binormal flow, Annals of PDE, 6 (2020).
doi: 10.1007/s40818-020-0078-z. |
[4] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[5] |
R. Carles and T. Kappeler,
Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces, Bull. Soc. Math. France, 145 (2017), 623-642.
|
[6] |
M. Christ, J. Colliander and T. Tao,
Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.
doi: 10.1353/ajm.2003.0040. |
[7] |
L. S. Da Rios,
On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo, 22 (1906), 117-135.
|
[8] |
F. De la Hoz and L. Vega,
Vortex filament equation for a regular polygon, Nonlinearity, 27 (2014), 3031-3057.
doi: 10.1088/0951-7715/27/12/3031. |
[9] |
A. Grünrock,
Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005 (2005), 2525-2558.
doi: 10.1155/IMRN.2005.2525. |
[10] |
A. Grünrock and S. Herr,
Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.
doi: 10.1137/070689139. |
[11] |
B. Harrop-Griffiths, R. Killip and M. Visan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv: 2003.05011. |
[12] |
H. Hasimoto,
A solution on a vortex filament, J. Fluid Mech., 51 (1972), 477-485.
doi: 10.1017/S0022112072002307. |
[13] |
R. L. Jerrard and D. Smets,
On the motion of a curve by its binormal curvature, J. Eur. Math. Soc., 17 (2015), 1487-1515.
doi: 10.4171/JEMS/536. |
[14] |
C. E. Kenig, G. Ponce and L. Vega,
On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.
doi: 10.1215/S0012-7094-01-10638-8. |
[15] |
N. Kishimoto,
Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464.
|
[16] |
N. Kita,
Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, GAKUTO Internat. Ser., Math. Sci. Appl., 26 (2006), 111-128.
|
[17] |
T. Oh,
A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac., 60 (2017), 259-277.
doi: 10.1619/fesi.60.259. |
[18] |
T. Oh and Y. Wang,
Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, J. Differential Equations, 269 (2020), 612-640.
doi: 10.1016/j.jde.2019.12.017. |
[19] |
Y. Tsutsumi,
$L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.
|
[20] |
A. Vargas and L. Vega,
Global well-posedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm, J. Math. Pures Appl, 80 (2001), 1029-1044.
doi: 10.1016/S0021-7824(01)01224-7. |
show all references
References:
[1] |
V. Banica and L. Vega,
Scattering for 1D cubic NLS and singular vortex dynamics, J. Eur. Math. Soc. (JEMS), 14 (2012), 209-253.
doi: 10.4171/JEMS/300. |
[2] |
V. Banica and L. Vega,
Stability of the self-similar dynamics of a vortex filament, Arch. Ration. Mech. Anal., 210 (2013), 673-712.
doi: 10.1007/s00205-013-0660-6. |
[3] |
V. Banica and L. Vega, Evolution of polygonal lines by the binormal flow, Annals of PDE, 6 (2020).
doi: 10.1007/s40818-020-0078-z. |
[4] |
J. Bourgain,
Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688. |
[5] |
R. Carles and T. Kappeler,
Norm-inflation with infinite loss of regularity for periodic NLS equations in negative Sobolev spaces, Bull. Soc. Math. France, 145 (2017), 623-642.
|
[6] |
M. Christ, J. Colliander and T. Tao,
Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 125 (2003), 1235-1293.
doi: 10.1353/ajm.2003.0040. |
[7] |
L. S. Da Rios,
On the motion of an unbounded fluid with a vortex filament of any shape, Rend. Circ. Mat. Palermo, 22 (1906), 117-135.
|
[8] |
F. De la Hoz and L. Vega,
Vortex filament equation for a regular polygon, Nonlinearity, 27 (2014), 3031-3057.
doi: 10.1088/0951-7715/27/12/3031. |
[9] |
A. Grünrock,
Bi-and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005 (2005), 2525-2558.
doi: 10.1155/IMRN.2005.2525. |
[10] |
A. Grünrock and S. Herr,
Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 39 (2008), 1890-1920.
doi: 10.1137/070689139. |
[11] |
B. Harrop-Griffiths, R. Killip and M. Visan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv: 2003.05011. |
[12] |
H. Hasimoto,
A solution on a vortex filament, J. Fluid Mech., 51 (1972), 477-485.
doi: 10.1017/S0022112072002307. |
[13] |
R. L. Jerrard and D. Smets,
On the motion of a curve by its binormal curvature, J. Eur. Math. Soc., 17 (2015), 1487-1515.
doi: 10.4171/JEMS/536. |
[14] |
C. E. Kenig, G. Ponce and L. Vega,
On the ill-posedness of some canonical dispersive equations, Duke Math. J., 106 (2001), 617-633.
doi: 10.1215/S0012-7094-01-10638-8. |
[15] |
N. Kishimoto,
Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differential Integral Equations, 22 (2009), 447-464.
|
[16] |
N. Kita,
Mode generating property of solutions to the nonlinear Schrödinger equations in one space dimension, GAKUTO Internat. Ser., Math. Sci. Appl., 26 (2006), 111-128.
|
[17] |
T. Oh,
A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkcial. Ekvac., 60 (2017), 259-277.
doi: 10.1619/fesi.60.259. |
[18] |
T. Oh and Y. Wang,
Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces, J. Differential Equations, 269 (2020), 612-640.
doi: 10.1016/j.jde.2019.12.017. |
[19] |
Y. Tsutsumi,
$L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac., 30 (1987), 115-125.
|
[20] |
A. Vargas and L. Vega,
Global well-posedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm, J. Math. Pures Appl, 80 (2001), 1029-1044.
doi: 10.1016/S0021-7824(01)01224-7. |
[1] |
Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013 |
[2] |
Yvan Martel, Tiễn Vinh Nguyến. Construction of 2-solitons with logarithmic distance for the one-dimensional cubic Schrödinger system. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1595-1620. doi: 10.3934/dcds.2020087 |
[3] |
Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148 |
[4] |
Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127 |
[5] |
Alessandro Michelangeli. Strengthened convergence of marginals to the cubic nonlinear Schrödinger equation. Kinetic and Related Models, 2010, 3 (3) : 457-471. doi: 10.3934/krm.2010.3.457 |
[6] |
Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803 |
[7] |
Qing Xu. Backward stochastic Schrödinger and infinite-dimensional Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5379-5412. doi: 10.3934/dcds.2015.35.5379 |
[8] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[9] |
Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565 |
[10] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[11] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[12] |
Yuji Sagawa, Hideaki Sunagawa. The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5743-5761. doi: 10.3934/dcds.2016052 |
[13] |
Christopher Chong, Dmitry Pelinovsky. Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1019-1031. doi: 10.3934/dcdss.2011.4.1019 |
[14] |
Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533 |
[15] |
Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237 |
[16] |
Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089 |
[17] |
J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665 |
[18] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 79-93. doi: 10.3934/dcdss.2021030 |
[19] |
Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085 |
[20] |
Salah Missaoui, Ezzeddine Zahrouni. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system with cubic nonlinearities in $\mathbb{R}^2$. Communications on Pure and Applied Analysis, 2015, 14 (2) : 695-716. doi: 10.3934/cpaa.2015.14.695 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]