• Previous Article
    An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515)
  • DCDS Home
  • This Issue
  • Next Article
    The primitive equations of the polluted atmosphere as a weak and strong limit of the 3D Navier-Stokes equations in downwind-matching coordinates
doi: 10.3934/dcds.2021206
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Global well-posedness for fractional Sobolev-Galpern type equations

1. 

Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam

2. 

Faculty of Technology, Van Lang University, Ho Chi Minh City, Vietnam

3. 

College of Mathematical Sciences, Harbin Engineering University, 150001, China

* Corresponding author: yangchao_@hrbeu.edu.cn (Chao Yang)

Received  August 2021 Revised  November 2021 Early access January 2022

This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.

Citation: Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021206
References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation, J. Differential Equations, 63 (1986), 117-134.  doi: 10.1016/0022-0396(86)90057-4.  Google Scholar

[2]

C. J. AmickJ. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[3]

E. BazhlekovaB. JinR. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131 (2015), 1-31.  doi: 10.1007/s00211-014-0685-2.  Google Scholar

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[5]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[6]

T. CaraballoA. M. M. Duran and F. Rivero, Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1817-1833.  doi: 10.3934/dcdsb.2017108.  Google Scholar

[7]

A. O. CelebiV. K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differential Equations, 157 (1999), 439-451.  doi: 10.1006/jdeq.1999.3634.  Google Scholar

[8]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[9]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[10]

P. J. Chen and E. G. Morton, On a theory of heat conduction involving two temperatures, Zeitschrift für Angewandte Mathematik und Physik, 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[11]

Y. ChenH. GaoM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[12]

B. D. Coleman and W. Noll, An approximation theorem for functionals, with applications in continuum mechanics, Arch. Rational Mech. Anal., 6 (1960), 355-370.  doi: 10.1007/BF00276168.  Google Scholar

[13]

P. M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $ {\mathbb{R}}^N $, J. Differential Equations, 259 (2015), 2948-2980.  doi: 10.1016/j.jde.2015.04.008.  Google Scholar

[14]

R. Grande, Space-time fractional nonlinear Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 4172-4212.  doi: 10.1137/19M1247140.  Google Scholar

[15]

N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differential Equations, 251 (2011), 1172-1194.  doi: 10.1016/j.jde.2011.02.015.  Google Scholar

[16]

L. LiJ. G. Liu and L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[17]

W. LianW. Juan and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[18]

L. A. Medeiros and G. P. Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal., 8 (1977), 792-799.  doi: 10.1137/0508062.  Google Scholar

[19]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[21]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[22]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1-26.  doi: 10.1007/BF00250690.  Google Scholar

[23]

N. Trudinger, On imbeddings into orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.  Google Scholar

[24]

N. H. TuanV. V. Au and R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2021), 583-621.  doi: 10.3934/cpaa.2020282.  Google Scholar

[25]

N. H. Tuan and T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Amer. Math. Soc., 149 (2021), 143-161.  doi: 10.1090/proc/15131.  Google Scholar

[26]

X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar

[27]

Y. Xiao, Packing measure of the sample paths of fractional Brownian motion, Trans. Amer. Math. Soc., 348 (1996), 3193-3213.  doi: 10.1090/S0002-9947-96-01712-6.  Google Scholar

[28]

R. XuW. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.  doi: 10.1007/s11425-017-9280-x.  Google Scholar

[29]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[30]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485.  doi: 10.3934/cpaa.2015.14.2465.  Google Scholar

show all references

References:
[1]

J. Albert, Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation, J. Differential Equations, 63 (1986), 117-134.  doi: 10.1016/0022-0396(86)90057-4.  Google Scholar

[2]

C. J. AmickJ. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations, 81 (1989), 1-49.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[3]

E. BazhlekovaB. JinR. Lazarov and Z. Zhou, An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131 (2015), 1-31.  doi: 10.1007/s00211-014-0685-2.  Google Scholar

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser. A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[5]

M. BonforteY. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725-5767.  doi: 10.3934/dcds.2015.35.5725.  Google Scholar

[6]

T. CaraballoA. M. M. Duran and F. Rivero, Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 1817-1833.  doi: 10.3934/dcdsb.2017108.  Google Scholar

[7]

A. O. CelebiV. K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Differential Equations, 157 (1999), 439-451.  doi: 10.1006/jdeq.1999.3634.  Google Scholar

[8]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[9]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[10]

P. J. Chen and E. G. Morton, On a theory of heat conduction involving two temperatures, Zeitschrift für Angewandte Mathematik und Physik, 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[11]

Y. ChenH. GaoM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than 1/2 and random dynamical systems, Discrete Contin. Dyn. Syst., 34 (2014), 79-98.  doi: 10.3934/dcds.2014.34.79.  Google Scholar

[12]

B. D. Coleman and W. Noll, An approximation theorem for functionals, with applications in continuum mechanics, Arch. Rational Mech. Anal., 6 (1960), 355-370.  doi: 10.1007/BF00276168.  Google Scholar

[13]

P. M. de Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $ {\mathbb{R}}^N $, J. Differential Equations, 259 (2015), 2948-2980.  doi: 10.1016/j.jde.2015.04.008.  Google Scholar

[14]

R. Grande, Space-time fractional nonlinear Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 4172-4212.  doi: 10.1137/19M1247140.  Google Scholar

[15]

N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity, J. Differential Equations, 251 (2011), 1172-1194.  doi: 10.1016/j.jde.2011.02.015.  Google Scholar

[16]

L. LiJ. G. Liu and L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.  doi: 10.1016/j.jde.2018.03.025.  Google Scholar

[17]

W. LianW. Juan and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[18]

L. A. Medeiros and G. P. Menzala, Existence and uniqueness for periodic solutions of the Benjamin-Bona-Mahony equation, SIAM J. Math. Anal., 8 (1977), 792-799.  doi: 10.1137/0508062.  Google Scholar

[19]

V. Padrón, Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation, Trans. Amer. Math. Soc., 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[21]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[22]

T. W. Ting, Certain non-steady flows of second-order fluids, Arch. Rational Mech. Anal., 14 (1963), 1-26.  doi: 10.1007/BF00250690.  Google Scholar

[23]

N. Trudinger, On imbeddings into orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.  doi: 10.1512/iumj.1968.17.17028.  Google Scholar

[24]

N. H. TuanV. V. Au and R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2021), 583-621.  doi: 10.3934/cpaa.2020282.  Google Scholar

[25]

N. H. Tuan and T. Caraballo, On initial and terminal value problems for fractional nonclassical diffusion equations, Proc. Amer. Math. Soc., 149 (2021), 143-161.  doi: 10.1090/proc/15131.  Google Scholar

[26]

X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar

[27]

Y. Xiao, Packing measure of the sample paths of fractional Brownian motion, Trans. Amer. Math. Soc., 348 (1996), 3193-3213.  doi: 10.1090/S0002-9947-96-01712-6.  Google Scholar

[28]

R. XuW. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321-356.  doi: 10.1007/s11425-017-9280-x.  Google Scholar

[29]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[30]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485.  doi: 10.3934/cpaa.2015.14.2465.  Google Scholar

[1]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[2]

Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121

[3]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[4]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[5]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[6]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[7]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[8]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2022, 11 (1) : 225-238. doi: 10.3934/eect.2020109

[9]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29 (5) : 3097-3119. doi: 10.3934/era.2021028

[10]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[11]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021147

[12]

Xin Zhong. Global well-posedness and exponential decay for 3D nonhomogeneous magneto-micropolar fluid equations with vacuum. Communications on Pure & Applied Analysis, 2022, 21 (2) : 493-515. doi: 10.3934/cpaa.2021185

[13]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[14]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[15]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[16]

Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete & Continuous Dynamical Systems - S, 2022, 15 (2) : 481-499. doi: 10.3934/dcdss.2021118

[17]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[18]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[19]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[20]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (31)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]