• Previous Article
    A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions I : Classification of asymptotic behavior
  • DCDS Home
  • This Issue
  • Next Article
    Higher order parabolic boundary Harnack inequality in C1 and Ck, α domains
June  2022, 42(6): 2699-2718. doi: 10.3934/dcds.2021208

On involution kernels and large deviations principles on $ \beta $-shifts

School of Mathematics, National University of Colombia, Medellín 050034, Colombia

Received  January 2021 Revised  October 2021 Published  June 2022 Early access  January 2022

Fund Project: Supported by FFJC-MINCIENCIAS Process 80740-628-2020

Consider $ \beta > 1 $ and $ \lfloor \beta \rfloor $ its integer part. It is widely known that any real number $ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $ can be represented in base $ \beta $ using a development in series of the form $ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $, where $ x = (x_n)_{n \geq 1} $ is a sequence taking values into the alphabet $ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $. The so called $ \beta $-shift, denoted by $ \Sigma_\beta $, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy $ \beta $-expansion of $ 1 $. Fixing a Hölder continuous potential $ A $, we show an explicit expression for the main eigenfunction of the Ruelle operator $ \psi_A $, in order to obtain a natural extension to the bilateral $ \beta $-shift of its corresponding Gibbs state $ \mu_A $. Our main goal here is to prove a first level large deviations principle for the family $ (\mu_{tA})_{t>1} $ with a rate function $ I $ attaining its maximum value on the union of the supports of all the maximizing measures of $ A $. The above is proved through a technique using the representation of $ \Sigma_\beta $ and its bilateral extension $ \widehat{\Sigma_\beta} $ in terms of the quasi-greedy $ \beta $-expansion of $ 1 $ and the so called involution kernel associated to the potential $ A $.

Citation: Victor Vargas. On involution kernels and large deviations principles on $ \beta $-shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2699-2718. doi: 10.3934/dcds.2021208
References:
[1]

A. Baraviera, R. Leplaideur and A. Lopes, Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. 29o Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium].

[2]

A. BaravieraA. O. Lopes and P. Thieullen, A large deviation principle for the equilibrium states of Hölder potentials: The zero temperature case, Stoch. Dyn., 6 (2006), 77-96.  doi: 10.1142/S0219493706001657.

[3]

A. T. BaravieraL. M. CiolettiA. O. LopesJ. Mohr and R. R. Souza, On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.  doi: 10.1142/S0129055X11004527.

[4]

A. Bertrand-Mathis, Développement en base $\theta$; répartition modulo un de la suite $(x\theta^n)_{n\geq 0}$; langages codés et $\theta$-shift, Bull. Soc. Math. France, 114 (1986), 271-323.  doi: 10.24033/bsmf.2058.

[5]

R. Bissacot, J. K. Mengue and E. Pérez, A large deviation principle for gibbs states on countable markov shifts at zero temperature, 2015. arXiv: 1612.05831.

[6]

F. Blanchard, $\beta$-expansions and symbolic dynamics, Theoret. Comput. Sci., 65 (1989), 131-141.  doi: 10.1016/0304-3975(89)90038-8.

[7]

V. ClimenhagaD. J. Thompson and K. Yamamoto, Large deviations for systems with non-uniform structure, Trans. Amer. Math. Soc., 369 (2017), 4167-4192.  doi: 10.1090/tran/6786.

[8]

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, volume 38 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition. doi: 10.1007/978-3-642-03311-7.

[9]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, volume 527, Springer, Cham, 1976. doi: 10.1007/BFb0082364.

[10]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. Ⅰ. Ⅱ, Comm. Pure Appl. Math., 28, 1–47; ibid. 28 (1975), 279–301. doi: 10.1002/cpa.3160280102.

[11]

R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, , Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1985 original. doi: 10.1007/3-540-29060-5.

[12]

P. ErdősM. Horváth and I. Joó, On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.  doi: 10.1007/BF01903963.

[13]

P. ErdösI. Joó and V. Komornik, Characterization of the unique expansions $1 = \sum^\infty_{i = 1}q^{-n_i}$ and related problems, Bull. Soc. Math. France, 118 (1990), 377-390.  doi: 10.24033/bsmf.2151.

[14]

A. Fan and Y. Jiang, On Ruelle-Perron-Frobenius operators. Ⅰ. Ruelle theorem, Comm. Math. Phys., 223 (2001), 125-141.  doi: 10.1007/s002200100538.

[15]

A. Fan and Y. Jiang, On Ruelle-Perron-Frobenius operators. Ⅱ. Convergence speeds, Comm. Math. Phys., 223 (2001), 143-159.  doi: 10.1007/s002200100539.

[16]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.  doi: 10.4310/MRL.2001.v8.n4.a12.

[17]

B. P. Kitchens, Symbolic Dynamics, , Universitext. Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts. doi: 10.1007/978-3-642-58822-8.

[18]

A. O. Lopes and J. K. Mengue, Selection of measure and a large deviation principle for the general one-dimensional $XY$ model, Dyn. Syst., 29 (2014), 24-39.  doi: 10.1080/14689367.2013.835792.

[19]

A. O. LopesJ. K. MengueJ. Mohr and R. R. Souza, Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: Positive and zero temperature, Ergodic Theory Dynam. Systems, 35 (2015), 1925-1961.  doi: 10.1017/etds.2014.15.

[20]

A. O. Lopes and V. Vargas, Gibbs states and Gibbsian specifications on the space $\mathbb{R}^\mathbb{N}$, Dyn. Syst., 35 (2020), 216–241. doi: 10.1080/14689367.2019.1663789.

[21]

W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.  doi: 10.1007/BF02020954.

[22]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 268 (1990), 187-188. 

[23]

C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.  doi: 10.1088/0951-7715/18/1/013.

[24]

A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.  doi: 10.1007/BF02020331.

[25]

N. Sidorov, Almost every number has a continuum of $\beta$-expansions, Am. Math. Mon., 110 (2003), 838–842. doi: 10.2307/3647804.

[26]

R. R. Souza and V. Vargas, Existence of Gibbs states and maximizing measures on a general one-dimensional lattice system with markovian structure, Qual. Theory Dyn. Syst., 21 (2022), Paper No. 5, 28 pp. doi: 10.1007/s12346-021-00537-y.

[27]

S. R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math., 19 (1966), 261-286.  doi: 10.1002/cpa.3160190303.

[28]

C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.

[29]

P. Walters, Equilibrium states for $\beta $-transformations and related transformations, Math. Z., 159 (1978), 65-88.  doi: 10.1007/BF01174569.

[30]

P. Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.

show all references

References:
[1]

A. Baraviera, R. Leplaideur and A. Lopes, Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. 29o Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium].

[2]

A. BaravieraA. O. Lopes and P. Thieullen, A large deviation principle for the equilibrium states of Hölder potentials: The zero temperature case, Stoch. Dyn., 6 (2006), 77-96.  doi: 10.1142/S0219493706001657.

[3]

A. T. BaravieraL. M. CiolettiA. O. LopesJ. Mohr and R. R. Souza, On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.  doi: 10.1142/S0129055X11004527.

[4]

A. Bertrand-Mathis, Développement en base $\theta$; répartition modulo un de la suite $(x\theta^n)_{n\geq 0}$; langages codés et $\theta$-shift, Bull. Soc. Math. France, 114 (1986), 271-323.  doi: 10.24033/bsmf.2058.

[5]

R. Bissacot, J. K. Mengue and E. Pérez, A large deviation principle for gibbs states on countable markov shifts at zero temperature, 2015. arXiv: 1612.05831.

[6]

F. Blanchard, $\beta$-expansions and symbolic dynamics, Theoret. Comput. Sci., 65 (1989), 131-141.  doi: 10.1016/0304-3975(89)90038-8.

[7]

V. ClimenhagaD. J. Thompson and K. Yamamoto, Large deviations for systems with non-uniform structure, Trans. Amer. Math. Soc., 369 (2017), 4167-4192.  doi: 10.1090/tran/6786.

[8]

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, volume 38 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition. doi: 10.1007/978-3-642-03311-7.

[9]

M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, volume 527, Springer, Cham, 1976. doi: 10.1007/BFb0082364.

[10]

M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. Ⅰ. Ⅱ, Comm. Pure Appl. Math., 28, 1–47; ibid. 28 (1975), 279–301. doi: 10.1002/cpa.3160280102.

[11]

R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, , Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1985 original. doi: 10.1007/3-540-29060-5.

[12]

P. ErdősM. Horváth and I. Joó, On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.  doi: 10.1007/BF01903963.

[13]

P. ErdösI. Joó and V. Komornik, Characterization of the unique expansions $1 = \sum^\infty_{i = 1}q^{-n_i}$ and related problems, Bull. Soc. Math. France, 118 (1990), 377-390.  doi: 10.24033/bsmf.2151.

[14]

A. Fan and Y. Jiang, On Ruelle-Perron-Frobenius operators. Ⅰ. Ruelle theorem, Comm. Math. Phys., 223 (2001), 125-141.  doi: 10.1007/s002200100538.

[15]

A. Fan and Y. Jiang, On Ruelle-Perron-Frobenius operators. Ⅱ. Convergence speeds, Comm. Math. Phys., 223 (2001), 143-159.  doi: 10.1007/s002200100539.

[16]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.  doi: 10.4310/MRL.2001.v8.n4.a12.

[17]

B. P. Kitchens, Symbolic Dynamics, , Universitext. Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts. doi: 10.1007/978-3-642-58822-8.

[18]

A. O. Lopes and J. K. Mengue, Selection of measure and a large deviation principle for the general one-dimensional $XY$ model, Dyn. Syst., 29 (2014), 24-39.  doi: 10.1080/14689367.2013.835792.

[19]

A. O. LopesJ. K. MengueJ. Mohr and R. R. Souza, Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: Positive and zero temperature, Ergodic Theory Dynam. Systems, 35 (2015), 1925-1961.  doi: 10.1017/etds.2014.15.

[20]

A. O. Lopes and V. Vargas, Gibbs states and Gibbsian specifications on the space $\mathbb{R}^\mathbb{N}$, Dyn. Syst., 35 (2020), 216–241. doi: 10.1080/14689367.2019.1663789.

[21]

W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.  doi: 10.1007/BF02020954.

[22]

W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 268 (1990), 187-188. 

[23]

C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.  doi: 10.1088/0951-7715/18/1/013.

[24]

A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.  doi: 10.1007/BF02020331.

[25]

N. Sidorov, Almost every number has a continuum of $\beta$-expansions, Am. Math. Mon., 110 (2003), 838–842. doi: 10.2307/3647804.

[26]

R. R. Souza and V. Vargas, Existence of Gibbs states and maximizing measures on a general one-dimensional lattice system with markovian structure, Qual. Theory Dyn. Syst., 21 (2022), Paper No. 5, 28 pp. doi: 10.1007/s12346-021-00537-y.

[27]

S. R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math., 19 (1966), 261-286.  doi: 10.1002/cpa.3160190303.

[28]

C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.

[29]

P. Walters, Equilibrium states for $\beta $-transformations and related transformations, Math. Z., 159 (1978), 65-88.  doi: 10.1007/BF01174569.

[30]

P. Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.

[1]

Leandro Cioletti, Artur O. Lopes, Manuel Stadlbauer. Ruelle operator for continuous potentials and DLR-Gibbs measures. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4625-4652. doi: 10.3934/dcds.2020195

[2]

Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277

[3]

Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523

[4]

Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729

[5]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[6]

Artur O. Lopes, Jairo K. Mengue. On information gain, Kullback-Leibler divergence, entropy production and the involution kernel. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3593-3627. doi: 10.3934/dcds.2022026

[7]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[8]

Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881

[9]

Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961

[10]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[11]

Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805

[12]

Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021021

[13]

Leandro Cioletti, Artur O. Lopes. Interactions, specifications, DLR probabilities and the Ruelle operator in the one-dimensional lattice. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6139-6152. doi: 10.3934/dcds.2017264

[14]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[15]

Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016

[16]

Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327

[17]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[18]

Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic and Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245

[19]

Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965

[20]

Yunping Jiang, Yuan-Ling Ye. Convergence speed of a Ruelle operator associated with a non-uniformly expanding conformal dynamical system and a Dini potential. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4693-4713. doi: 10.3934/dcds.2018206

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (212)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]