Consider $ \beta > 1 $ and $ \lfloor \beta \rfloor $ its integer part. It is widely known that any real number $ \alpha \in \Bigl[0, \frac{\lfloor \beta \rfloor}{\beta - 1}\Bigr] $ can be represented in base $ \beta $ using a development in series of the form $ \alpha = \sum_{n = 1}^\infty x_n\beta^{-n} $, where $ x = (x_n)_{n \geq 1} $ is a sequence taking values into the alphabet $ \{0,\; ...\; ,\; \lfloor \beta \rfloor\} $. The so called $ \beta $-shift, denoted by $ \Sigma_\beta $, is given as the set of sequences such that all their iterates by the shift map are less than or equal to the quasi-greedy $ \beta $-expansion of $ 1 $. Fixing a Hölder continuous potential $ A $, we show an explicit expression for the main eigenfunction of the Ruelle operator $ \psi_A $, in order to obtain a natural extension to the bilateral $ \beta $-shift of its corresponding Gibbs state $ \mu_A $. Our main goal here is to prove a first level large deviations principle for the family $ (\mu_{tA})_{t>1} $ with a rate function $ I $ attaining its maximum value on the union of the supports of all the maximizing measures of $ A $. The above is proved through a technique using the representation of $ \Sigma_\beta $ and its bilateral extension $ \widehat{\Sigma_\beta} $ in terms of the quasi-greedy $ \beta $-expansion of $ 1 $ and the so called involution kernel associated to the potential $ A $.
Citation: |
[1] |
A. Baraviera, R. Leplaideur and A. Lopes, Ergodic Optimization, Zero Temperature Limits and the Max-Plus Algebra, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. 29o Colóquio Brasileiro de Matemática. [29th Brazilian Mathematics Colloquium].
![]() ![]() |
[2] |
A. Baraviera, A. O. Lopes and P. Thieullen, A large deviation principle for the equilibrium states of Hölder potentials: The zero temperature case, Stoch. Dyn., 6 (2006), 77-96.
doi: 10.1142/S0219493706001657.![]() ![]() ![]() |
[3] |
A. T. Baraviera, L. M. Cioletti, A. O. Lopes, J. Mohr and R. R. Souza, On the general one-dimensional $XY$ model: Positive and zero temperature, selection and non-selection, Rev. Math. Phys., 23 (2011), 1063-1113.
doi: 10.1142/S0129055X11004527.![]() ![]() ![]() |
[4] |
A. Bertrand-Mathis, Développement en base $\theta$; répartition modulo un de la suite $(x\theta^n)_{n\geq 0}$; langages codés et $\theta$-shift, Bull. Soc. Math. France, 114 (1986), 271-323.
doi: 10.24033/bsmf.2058.![]() ![]() ![]() |
[5] |
R. Bissacot, J. K. Mengue and E. Pérez, A large deviation principle for gibbs states on countable markov shifts at zero temperature, 2015. arXiv: 1612.05831.
![]() |
[6] |
F. Blanchard, $\beta$-expansions and symbolic dynamics, Theoret. Comput. Sci., 65 (1989), 131-141.
doi: 10.1016/0304-3975(89)90038-8.![]() ![]() ![]() |
[7] |
V. Climenhaga, D. J. Thompson and K. Yamamoto, Large deviations for systems with non-uniform structure, Trans. Amer. Math. Soc., 369 (2017), 4167-4192.
doi: 10.1090/tran/6786.![]() ![]() ![]() |
[8] |
A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, volume 38 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition.
doi: 10.1007/978-3-642-03311-7.![]() ![]() ![]() |
[9] |
M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, volume 527, Springer, Cham, 1976.
doi: 10.1007/BFb0082364.![]() ![]() ![]() |
[10] |
M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time. Ⅰ. Ⅱ, Comm. Pure Appl. Math., 28, 1–47; ibid. 28 (1975), 279–301.
doi: 10.1002/cpa.3160280102.![]() ![]() ![]() |
[11] |
R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, , Classics in Mathematics. Springer-Verlag, Berlin, 2006. Reprint of the 1985 original.
doi: 10.1007/3-540-29060-5.![]() ![]() ![]() |
[12] |
P. Erdős, M. Horváth and I. Joó, On the uniqueness of the expansions $1 = \sum q^{-n_i}$, Acta Math. Hungar., 58 (1991), 333-342.
doi: 10.1007/BF01903963.![]() ![]() ![]() |
[13] |
P. Erdös, I. Joó and V. Komornik, Characterization of the unique expansions $1 = \sum^\infty_{i = 1}q^{-n_i}$ and related problems, Bull. Soc. Math. France, 118 (1990), 377-390.
doi: 10.24033/bsmf.2151.![]() ![]() ![]() |
[14] |
A. Fan and Y. Jiang, On Ruelle-Perron-Frobenius operators. Ⅰ. Ruelle theorem, Comm. Math. Phys., 223 (2001), 125-141.
doi: 10.1007/s002200100538.![]() ![]() ![]() |
[15] |
A. Fan and Y. Jiang, On Ruelle-Perron-Frobenius operators. Ⅱ. Convergence speeds, Comm. Math. Phys., 223 (2001), 143-159.
doi: 10.1007/s002200100539.![]() ![]() ![]() |
[16] |
P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8 (2001), 535-543.
doi: 10.4310/MRL.2001.v8.n4.a12.![]() ![]() ![]() |
[17] |
B. P. Kitchens, Symbolic Dynamics, , Universitext. Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts.
doi: 10.1007/978-3-642-58822-8.![]() ![]() ![]() |
[18] |
A. O. Lopes and J. K. Mengue, Selection of measure and a large deviation principle for the general one-dimensional $XY$ model, Dyn. Syst., 29 (2014), 24-39.
doi: 10.1080/14689367.2013.835792.![]() ![]() ![]() |
[19] |
A. O. Lopes, J. K. Mengue, J. Mohr and R. R. Souza, Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: Positive and zero temperature, Ergodic Theory Dynam. Systems, 35 (2015), 1925-1961.
doi: 10.1017/etds.2014.15.![]() ![]() ![]() |
[20] |
A. O. Lopes and V. Vargas, Gibbs states and Gibbsian specifications on the space $\mathbb{R}^\mathbb{N}$, Dyn. Syst., 35 (2020), 216–241.
doi: 10.1080/14689367.2019.1663789.![]() ![]() ![]() |
[21] |
W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416.
doi: 10.1007/BF02020954.![]() ![]() ![]() |
[22] |
W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 268 (1990), 187-188.
![]() ![]() |
[23] |
C.-E. Pfister and W. G. Sullivan, Large deviations estimates for dynamical systems without the specification property. Applications to the $\beta$-shifts, Nonlinearity, 18 (2005), 237-261.
doi: 10.1088/0951-7715/18/1/013.![]() ![]() ![]() |
[24] |
A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 477-493.
doi: 10.1007/BF02020331.![]() ![]() ![]() |
[25] |
N. Sidorov, Almost every number has a continuum of $\beta$-expansions, Am. Math. Mon., 110 (2003), 838–842.
doi: 10.2307/3647804.![]() ![]() |
[26] |
R. R. Souza and V. Vargas, Existence of Gibbs states and maximizing measures on a general one-dimensional lattice system with markovian structure, Qual. Theory Dyn. Syst., 21 (2022), Paper No. 5, 28 pp.
doi: 10.1007/s12346-021-00537-y.![]() ![]() ![]() |
[27] |
S. R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math., 19 (1966), 261-286.
doi: 10.1002/cpa.3160190303.![]() ![]() ![]() |
[28] |
C. Villani, Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/gsm/058.![]() ![]() ![]() |
[29] |
P. Walters, Equilibrium states for $\beta $-transformations and related transformations, Math. Z., 159 (1978), 65-88.
doi: 10.1007/BF01174569.![]() ![]() ![]() |
[30] |
P. Walters, An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |