We study a free boundary problem of a reaction-diffusion equation $ u_t = \Delta u+f(u) $ for $ t>0,\ |x|<h(t) $ under a radially symmetric environment in $ \mathbb{R}^N $. The reaction term $ f $ has positive bistable nonlinearity, which satisfies $ f(0) = 0 $ and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface $ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $, which expands to infinity as $ t\to\infty $, even when the corresponding semi-wave problem does not admit solutions.
Citation: |
[1] | D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, pp. 5–49, Lecture Notes in Math., 446, Springer, Berlin, 1975. |
[2] | D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5. |
[3] | H. Berestycki, P.-L. Lions and L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb{R}^N$, Indiana Univ. Math. J., 30 (1981), 141-157. doi: 10.1512/iumj.1981.30.30012. |
[4] | G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603. doi: 10.3934/nhm.2012.7.583. |
[5] | R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction–Diffusion Equations, John Wiley & Sons Ltd, 2003. doi: 10.1002/0470871296. |
[6] | E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York, 1955. |
[7] | E. N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations, Proc. Amer. Math. Soc., 131 (2002), 1891-1899. doi: 10.1090/S0002-9939-02-06733-3. |
[8] | Y. Du and Z. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II, J. Differential Equations, 250 (2011), 4336-4366. doi: 10.1016/j.jde.2011.02.011. |
[9] | Y. Du and Z. Guo, The Stefan problem for the Fisher-KPP equation, J. Differential Equations, 253 (2012), 996-1035. doi: 10.1016/j.jde.2012.04.014. |
[10] | Y. Du, Z. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142. doi: 10.1016/j.jfa.2013.07.016. |
[11] | Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377–405, SIAM J. Math. Anal., 45 (2013), 1995–1996 (Erratum). doi: 10.1137/110822608. |
[12] | Y. Du and B. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724. doi: 10.4171/JEMS/568. |
[13] | Y. Du, B. Lou and M. Zhou, Spreading and vanishing for nonlinear Stefan problems in high space dimensions, J. Elliptic Parabol. Equ., 2 (2016), 297-321. doi: 10.1007/BF03377406. |
[14] | Y. Du, H. Matano and K. Wang, Regularity and asymptotic behavior of nonlinear Stefan problems, Arch. Rational Mech. Anal., 212 (2014), 957-1010. doi: 10.1007/s00205-013-0710-0. |
[15] | Y. Du, H. Matsuzawa and M. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396. doi: 10.1137/130908063. |
[16] | Y. Du, H. Matsuzawa and M. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pures Appl., 103 (2015), 741-787. doi: 10.1016/j.matpur.2014.07.008. |
[17] | M. Endo, Y. Kaneko and Y. Yamada, Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity, Discrete and Contin. Dyn. Syst., Series A, 40 (2020), 3375-3394. doi: 10.3934/dcds.2020033. |
[18] | Y. Kaneko, Spreading and vanishing behaviors for radially symmetric solutions of free boundary problems for reaction-diffusion equations, Nonlinear Anal. Real World Appl., 18 (2014), 121-140. doi: 10.1016/j.nonrwa.2014.01.008. |
[19] | Y. Kaneko, H. Matsuzawa and Y. Yamada, Asymptotic profiles of solutions and propagating terrace for a free boundary problem of reaction-diffusion equation with positive bistable nonlinearity, SIAM J. Math. Anal., 52 (2020), 65-103. doi: 10.1137/18M1209970. |
[20] | Y. Kaneko, H. Matsuzawa and Y. Yamada, A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions Ⅱ : Asymptotic profiles of solutions and radial terrace solution, preprint. |
[21] | Y. Kaneko and Y. Yamada, A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl., 21 (2011), 467-492. |
[22] | Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572. doi: 10.1016/j.jde.2016.03.017. |
[23] | C. Lei and Y. Du, Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 895-911. doi: 10.3934/dcdsb.2017045. |
[24] | X. Liu and B. Lou, On a reaction-diffusion equation with Robin and free boundary conditions, J. Differential Equations, 259 (2015), 423-453. doi: 10.1016/j.jde.2015.02.012. |
[25] | D. Ludwig, D. G. Aronson and H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217-258. doi: 10.1007/BF00276310. |
[26] | L. A. Peletier and J. Serrin, Uniqueness of non-negative solutions of semilinear equations in $\mathbb{R}^N$, J. Differential Equations, 61 (1986), 380-397. doi: 10.1016/0022-0396(86)90112-9. |
[27] | L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 81 (1983), 181-197. doi: 10.1007/BF00250651. |
[28] | J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorem for quasilinear elliptic equations and inequalities, Acta Math., 189 (2002), 79-142. doi: 10.1007/BF02392645. |
[29] | N. Shigesada and K. Kawasaki, Biological Invasions; Theory and Practice, Oxford Series in Ecology and Evolution, Oxford Univ. Press, 1997. |
[30] | J. G. Skellam, Random dispersal in theoretical populations, Biometrika, 38 (1951), 196-218. doi: 10.1093/biomet/38.1-2.196. |