doi: 10.3934/dcds.2021210
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Perturbative Cauchy theory for a flux-incompressible Maxwell-Stefan system

1. 

University of Graz, Institute of Mathematics and Scientific Computing, 8010 Graz, Austria

2. 

Université de Paris, Laboratoire MAP5, UMR CNRS 8145, F-75006 Paris, France

*Corresponding author

Received  January 2021 Revised  October 2021 Early access January 2022

Fund Project: The authors would like to thank Laurent Boudin and Bérénice Grec for fruitful discussions on the theory of gaseous and fluid mixtures

Recently, the authors proved [2] that the Maxwell-Stefan system with an incompressibility-like condition on the total flux can be rigorously derived from the multi-species Boltzmann equation. Similar cross-diffusion models have been widely investigated, but the particular case of a perturbative incompressible setting around a non constant equilibrium state of the mixture (needed in [2]) seems absent of the literature. We thus establish a quantitative perturbative Cauchy theory in Sobolev spaces for it. More precisely, by reducing the analysis of the Maxwell-Stefan system to the study of a quasilinear parabolic equation on the sole concentrations and with the use of a suitable anisotropic norm, we prove global existence and uniqueness of strong solutions and their exponential trend to equilibrium in a perturbative regime around any macroscopic equilibrium state of the mixture. As a by-product, we show that the equimolar diffusion condition naturally appears from this perturbative incompressible setting.

Citation: Andrea Bondesan, Marc Briant. Perturbative Cauchy theory for a flux-incompressible Maxwell-Stefan system. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021210
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, H.J. Schmeisser, H. Triebel (eds), Teubner, Stuttgart, Leipzig, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[2]

A. Bondesan and M. Briant, Stability of the Maxwell-Stefan system in the diffusion asymptotics of the Boltzmann multi-species equation, Comm. Math. Phys., 382 (2021), 381-440.  doi: 10.1007/s00220-021-03976-5.  Google Scholar

[3]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser/Springer Basel AG, Basel, 80 (2011), 81-93.  doi: 10.1007/978-3-0348-0075-4_5.  Google Scholar

[4]

L. Boudin, D. Götz and B. Grec, Diffusion models of multicomponent mixtures in the lung, CEMRACS 2009: Mathematical Modelling in Medicine, ESAIM Proc., EDP Sci., Les Ulis, 30 (2010), 90–103. doi: 10.1051/proc/2010008.  Google Scholar

[5]

L. BoudinB. Grec and V. Pavan, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections, Nonlinear Anal., 159 (2017), 40-61.  doi: 10.1016/j.na.2017.01.010.  Google Scholar

[6]

L. BoudinB. Grec and F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1427-1440.  doi: 10.3934/dcdsb.2012.17.1427.  Google Scholar

[7]

L. BoudinB. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures, Acta Applicandae Mathematicae, 136 (2015), 79-90.  doi: 10.1007/s10440-014-9886-z.  Google Scholar

[8]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[9]

H. Chang, Multicomponent diffusion in the lung, Fed. Proc., 39 (1980), 2759-2764.   Google Scholar

[10] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge, 1990.   Google Scholar
[11]

X. Chen and A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Comm. Math. Phys., 340 (2015), 471-497.  doi: 10.1007/s00220-015-2472-z.  Google Scholar

[12]

E. S. DausA. Jüngel and B. Q. Tang, Exponential time decay of solutions to reaction-cross-diffusion systems of Maxwell-Stefan type, Archive Rat. Mech. Anal., 235 (2020), 1059-1104.  doi: 10.1007/s00205-019-01439-9.  Google Scholar

[13]

L. DesvillettesTh. Lepoutre and A. Moussa, Entropy, duality, and cross diffusion, SIAM J. Math. Anal., 46 (2014), 820-853.  doi: 10.1137/130908701.  Google Scholar

[14]

A. Fick, Ueber diffusion, Ann. Der Physik, 170 (1855), 59-86.  doi: 10.1002/andp.18551700105.  Google Scholar

[15]

V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, Numerical Combustion, 351 (2005), 310-322.  doi: 10.1007/3-540-51968-8_94.  Google Scholar

[16]

V. Giovangigli, Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, Birkhüser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1580-6.  Google Scholar

[17]

V. Giovangigli and M. Massot, Les mélanges gazeux réactifs. I. Symétrisation et existence locale, C. R. Acad. Sci. Paris, 323 (1996), 1153-1158.   Google Scholar

[18]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.  Google Scholar

[19]

H. Hutridurga and F. Salvarani, On the Maxwell-Stefan diffusion limit for a mixture of monatomic gases, Math. Meth. in Appl. Sci., 40 (2017), 803-813.  doi: 10.1002/mma.4013.  Google Scholar

[20]

H. Hutridurga and F. Salvarani, Existence and uniqueness analysis of a non-isothermal cross-diffusion system of Maxwell-Stefan type, Appl. Math. Lett., 75 (2018), 108-113.  doi: 10.1016/j.aml.2017.06.007.  Google Scholar

[21]

A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[22]

A. Jüngel and I. V. Stelzer, Existence analysis of Maxwell-Stefan systems for multicomponent mixtures, SIAM J. Math. Anal., 45 (2013), 2421-2440.  doi: 10.1137/120898164.  Google Scholar

[23]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto Univ., https://ci.nii.ac.jp/naid/10026415245/en/. Google Scholar

[24]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci., 52 (1997), 861-911.  doi: 10.1016/S0009-2509(96)00458-7.  Google Scholar

[25]

Y. Lou and S. Martínez, Evolution of cross-diffusion and self-diffusion, J. Biol. Dyn., 3 (2009), 410-429.  doi: 10.1080/17513750802491849.  Google Scholar

[26]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[27]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.  Google Scholar

[28]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl., 104 (2015), 102-138.  doi: 10.1016/j.matpur.2015.02.003.  Google Scholar

[29]

J. Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc. Lond., 157 (1867), 49–88, http://dx.doi.org/10.1098/rstl.1867.0004. Google Scholar

[30]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[31]

J. Stefan, Über das gleichgewicht und die bewegung, insbesondere die diffusion von gasgemengen, Akad. Wiss. Wien, 63 (1871), 63-124.   Google Scholar

[32]

M. ThirietD. DouguetJ.-C. BonnetC. Canonne and C. Hatzfeld, The effect on gas mixing of a He-O2 mixture in chronic obstructive lung diseases, Bull. Eur. Physiopathol. Respir., 15 (1979), 1053-1068.   Google Scholar

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, H.J. Schmeisser, H. Triebel (eds), Teubner, Stuttgart, Leipzig, 133 (1993), 9–126. doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[2]

A. Bondesan and M. Briant, Stability of the Maxwell-Stefan system in the diffusion asymptotics of the Boltzmann multi-species equation, Comm. Math. Phys., 382 (2021), 381-440.  doi: 10.1007/s00220-021-03976-5.  Google Scholar

[3]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser/Springer Basel AG, Basel, 80 (2011), 81-93.  doi: 10.1007/978-3-0348-0075-4_5.  Google Scholar

[4]

L. Boudin, D. Götz and B. Grec, Diffusion models of multicomponent mixtures in the lung, CEMRACS 2009: Mathematical Modelling in Medicine, ESAIM Proc., EDP Sci., Les Ulis, 30 (2010), 90–103. doi: 10.1051/proc/2010008.  Google Scholar

[5]

L. BoudinB. Grec and V. Pavan, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures with general cross sections, Nonlinear Anal., 159 (2017), 40-61.  doi: 10.1016/j.na.2017.01.010.  Google Scholar

[6]

L. BoudinB. Grec and F. Salvarani, A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1427-1440.  doi: 10.3934/dcdsb.2012.17.1427.  Google Scholar

[7]

L. BoudinB. Grec and F. Salvarani, The Maxwell-Stefan diffusion limit for a kinetic model of mixtures, Acta Applicandae Mathematicae, 136 (2015), 79-90.  doi: 10.1007/s10440-014-9886-z.  Google Scholar

[8]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[9]

H. Chang, Multicomponent diffusion in the lung, Fed. Proc., 39 (1980), 2759-2764.   Google Scholar

[10] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge, 1990.   Google Scholar
[11]

X. Chen and A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Comm. Math. Phys., 340 (2015), 471-497.  doi: 10.1007/s00220-015-2472-z.  Google Scholar

[12]

E. S. DausA. Jüngel and B. Q. Tang, Exponential time decay of solutions to reaction-cross-diffusion systems of Maxwell-Stefan type, Archive Rat. Mech. Anal., 235 (2020), 1059-1104.  doi: 10.1007/s00205-019-01439-9.  Google Scholar

[13]

L. DesvillettesTh. Lepoutre and A. Moussa, Entropy, duality, and cross diffusion, SIAM J. Math. Anal., 46 (2014), 820-853.  doi: 10.1137/130908701.  Google Scholar

[14]

A. Fick, Ueber diffusion, Ann. Der Physik, 170 (1855), 59-86.  doi: 10.1002/andp.18551700105.  Google Scholar

[15]

V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, Numerical Combustion, 351 (2005), 310-322.  doi: 10.1007/3-540-51968-8_94.  Google Scholar

[16]

V. Giovangigli, Multicomponent Flow Modeling, Modeling and Simulation in Science, Engineering and Technology, Birkhüser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1580-6.  Google Scholar

[17]

V. Giovangigli and M. Massot, Les mélanges gazeux réactifs. I. Symétrisation et existence locale, C. R. Acad. Sci. Paris, 323 (1996), 1153-1158.   Google Scholar

[18]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics, Nonlinear Anal., 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.  Google Scholar

[19]

H. Hutridurga and F. Salvarani, On the Maxwell-Stefan diffusion limit for a mixture of monatomic gases, Math. Meth. in Appl. Sci., 40 (2017), 803-813.  doi: 10.1002/mma.4013.  Google Scholar

[20]

H. Hutridurga and F. Salvarani, Existence and uniqueness analysis of a non-isothermal cross-diffusion system of Maxwell-Stefan type, Appl. Math. Lett., 75 (2018), 108-113.  doi: 10.1016/j.aml.2017.06.007.  Google Scholar

[21]

A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[22]

A. Jüngel and I. V. Stelzer, Existence analysis of Maxwell-Stefan systems for multicomponent mixtures, SIAM J. Math. Anal., 45 (2013), 2421-2440.  doi: 10.1137/120898164.  Google Scholar

[23]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics, Doctoral Thesis, Kyoto Univ., https://ci.nii.ac.jp/naid/10026415245/en/. Google Scholar

[24]

R. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chem. Eng. Sci., 52 (1997), 861-911.  doi: 10.1016/S0009-2509(96)00458-7.  Google Scholar

[25]

Y. Lou and S. Martínez, Evolution of cross-diffusion and self-diffusion, J. Biol. Dyn., 3 (2009), 410-429.  doi: 10.1080/17513750802491849.  Google Scholar

[26]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[27]

A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.  Google Scholar

[28]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl., 104 (2015), 102-138.  doi: 10.1016/j.matpur.2015.02.003.  Google Scholar

[29]

J. Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc. Lond., 157 (1867), 49–88, http://dx.doi.org/10.1098/rstl.1867.0004. Google Scholar

[30]

N. ShigesadaK. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[31]

J. Stefan, Über das gleichgewicht und die bewegung, insbesondere die diffusion von gasgemengen, Akad. Wiss. Wien, 63 (1871), 63-124.   Google Scholar

[32]

M. ThirietD. DouguetJ.-C. BonnetC. Canonne and C. Hatzfeld, The effect on gas mixing of a He-O2 mixture in chronic obstructive lung diseases, Bull. Eur. Physiopathol. Respir., 15 (1979), 1053-1068.   Google Scholar

[1]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (11) : 4035-4067. doi: 10.3934/dcdss.2020458

[2]

Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

[3]

B. Anwasia, M. Bisi, F. Salvarani, A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture of polyatomic gases in non-isothermal setting. Kinetic & Related Models, 2020, 13 (1) : 63-95. doi: 10.3934/krm.2020003

[4]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[5]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[6]

Horst Heck, Gunther Uhlmann, Jenn-Nan Wang. Reconstruction of obstacles immersed in an incompressible fluid. Inverse Problems & Imaging, 2007, 1 (1) : 63-76. doi: 10.3934/ipi.2007.1.63

[7]

Youcef Amirat, Kamel Hamdache. On a heated incompressible magnetic fluid model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 675-696. doi: 10.3934/cpaa.2012.11.675

[8]

Scott W. Hansen, Andrei A. Lyashenko. Exact controllability of a beam in an incompressible inviscid fluid. Discrete & Continuous Dynamical Systems, 1997, 3 (1) : 59-78. doi: 10.3934/dcds.1997.3.59

[9]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[10]

Jianwei Yang, Ruxu Lian, Shu Wang. Incompressible type euler as scaling limit of compressible Euler-Maxwell equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 503-518. doi: 10.3934/cpaa.2013.12.503

[11]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[12]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[13]

Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i

[14]

D. L. Denny. Existence of solutions to equations for the flow of an incompressible fluid with capillary effects. Communications on Pure & Applied Analysis, 2004, 3 (2) : 197-216. doi: 10.3934/cpaa.2004.3.197

[15]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[16]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[17]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[18]

Yang Liu, Xin Zhong. On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5219-5238. doi: 10.3934/cpaa.2020234

[19]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[20]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the compressible two-fluid Euler–Maxwell equations for well-prepared initial data. Electronic Research Archive, 2020, 28 (2) : 879-895. doi: 10.3934/era.2020046

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (26)
  • HTML views (21)
  • Cited by (0)

Other articles
by authors

[Back to Top]