doi: 10.3934/dcds.2021211
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On $ n $-tuplewise IP-sensitivity and thick sensitivity

Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, China

Received  May 2021 Revised  November 2021 Early access January 2022

Fund Project: The authors were supported by NNSF of China (11771264, 11871188) and NSF of Guangdong Province (2018B030306024)

Let
$ (X,T) $
be a topological dynamical system and
$ n\geq 2 $
. We say that
$ (X,T) $
is
$ n $
-tuplewise IP-sensitive (resp.
$ n $
-tuplewise thickly sensitive) if there exists a constant
$ \delta>0 $
with the property that for each non-empty open subset
$ U $
of
$ X $
, there exist
$ x_1,x_2,\dotsc,x_n\in U $
such that
$ \Bigl\{k\in \mathbb{N}\colon \min\limits_{1\le i<j\le n}d(T^k x_i,T^k x_j)>\delta\Bigr\} $
is an IP-set (resp. a thick set).
We obtain several sufficient and necessary conditions of a dynamical system to be
$ n $
-tuplewise IP-sensitive or
$ n $
-tuplewise thickly sensitive and show that any non-trivial weakly mixing system is
$ n $
-tuplewise IP-sensitive for all
$ n\geq 2 $
, while it is
$ n $
-tuplewise thickly sensitive if and only if it has at least
$ n $
minimal points. We characterize two kinds of sensitivity by considering some kind of factor maps. We introduce the opposite side of pairwise IP-sensitivity and pairwise thick sensitivity, named (almost) pairwise IP
$ ^* $
-equicontinuity and (almost) pairwise syndetic equicontinuity, and obtain dichotomies results for them. In particular, we show that a minimal system is distal if and only if it is pairwise IP
$ ^* $
-equicontinuous. We show that every minimal system admits a maximal almost pairwise IP
$ ^* $
-equicontinuous factor and admits a maximal pairwise syndetic equicontinuous factor, and characterize them by the factor maps to their maximal distal factors.
Citation: Jian Li, Yini Yang. On $ n $-tuplewise IP-sensitivity and thick sensitivity. Discrete & Continuous Dynamical Systems, doi: 10.3934/dcds.2021211
References:
[1]

E. Akin, Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions, The University Series in Mathematics, Plenum Press, New York, 1997. doi: 10.1007/978-1-4757-2668-8.  Google Scholar

[2]

J. Auslander, On the proximal relation in topological dynamics, Proc. Amer. Math. Soc., 11 (1960), 890-895.  doi: 10.1090/S0002-9939-1960-0164335-7.  Google Scholar

[3]

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153. Mathematical Notes, 122. North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[4]

J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J. (2), 32 (1980), 177-188.  doi: 10.2748/tmj/1178229634.  Google Scholar

[5]

L. Auslander, L. Green and F. Hahn, Flows on Homogeneous Spaces, Annals of Mathematics Studies, 53, Princeton University Press, Princeton, N.J. 1963.  Google Scholar

[6]

J. Clay, Variations on equicontinuity, Duke Math. J., 30 (1963), 423-431.  doi: 10.1215/S0012-7094-63-03045-X.  Google Scholar

[7]

J. P. Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc., 108 (1963), 88-96.  doi: 10.1090/S0002-9947-1963-0154269-3.  Google Scholar

[8]

R. Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc., 94 (1960), 258-271.  doi: 10.1090/S0002-9947-1960-0123635-1.  Google Scholar

[9]

S. Fomin, On dynamical systems with a purely point spectrum (in Russian), Dokl. Akad. Nauk SSSR (N.S.), 77 (1951), 29-32.   Google Scholar

[10]

H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math., 83 (1961), 573-601.  doi: 10.2307/2372899.  Google Scholar

[11]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[12]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.  Google Scholar

[13]

W. H. He and Z. L. Zhou, A topologically mixing system whose measure center is a singleton, Acta Math. Sinica (Chin. Ser.), 45 (2002), 929-934.   Google Scholar

[14]

W. HuangS. Kolyada and G. Zhang, Analogues of Auslander-Yorke theorems for multi-sensitivity, Ergodic Theory Dynam. Systems, 38 (2018), 651-665.  doi: 10.1017/etds.2016.48.  Google Scholar

[15]

W. HuangD. KhilkoS. KolyadaA. Peris and G. Zhang, Finite intersection property and dynamical compactness, J. Dynam. Differential Equations, 30 (2018), 1221-1245.  doi: 10.1007/s10884-017-9600-8.  Google Scholar

[16]

J. Li, Dynamical characterization of C-sets and its application, Fund. Math., 216 (2012), 259-286.  doi: 10.4064/fm216-3-4.  Google Scholar

[17]

J. LiS. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587-2612.  doi: 10.1017/etds.2014.41.  Google Scholar

[18]

J. Li and X. D. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114.  doi: 10.1007/s10114-015-4574-0.  Google Scholar

[19]

J. Li and Y. Yang, Stronger versions of sensitivity for minimal group actions, Acta Math. Sin. (Engl. Ser.), 37 (2021), 1933-1946.  doi: 10.1007/s10114-021-0511-6.  Google Scholar

[20]

J. LiX. Ye and T. Yu, Mean equicontinuity, complexity and applications, Discrete Contin. Dyn. Syst., 41 (2021), 359-393.  doi: 10.3934/dcds.2020167.  Google Scholar

[21]

T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115-2126.  doi: 10.1088/0951-7715/20/9/006.  Google Scholar

[22]

F. Tan and R. Zhang, On $\mathcal{F}$-sensitive pairs, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 1425-1435.  doi: 10.1016/S0252-9602(11)60328-7.  Google Scholar

[23]

J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, 257. Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[24]

J. Xiong, Chaos in a topologically transitive system, Sci. China Ser. A, 48 (2005), 929-939.  doi: 10.1007/BF02879075.  Google Scholar

[25]

X. Ye and T. Yu, Sensitivity, proximal extension and higher order almost automorphy, Trans. Amer. Math. Soc., 370 (2018), 3639-3662.  doi: 10.1090/tran/7100.  Google Scholar

show all references

References:
[1]

E. Akin, Recurrence in Topological Dynamics, Furstenberg Families and Ellis Actions, The University Series in Mathematics, Plenum Press, New York, 1997. doi: 10.1007/978-1-4757-2668-8.  Google Scholar

[2]

J. Auslander, On the proximal relation in topological dynamics, Proc. Amer. Math. Soc., 11 (1960), 890-895.  doi: 10.1090/S0002-9939-1960-0164335-7.  Google Scholar

[3]

J. Auslander, Minimal Flows and Their Extensions, North-Holland Mathematics Studies, 153. Mathematical Notes, 122. North-Holland Publishing Co., Amsterdam, 1988.  Google Scholar

[4]

J. Auslander and J. A. Yorke, Interval maps, factors of maps, and chaos, Tohoku Math. J. (2), 32 (1980), 177-188.  doi: 10.2748/tmj/1178229634.  Google Scholar

[5]

L. Auslander, L. Green and F. Hahn, Flows on Homogeneous Spaces, Annals of Mathematics Studies, 53, Princeton University Press, Princeton, N.J. 1963.  Google Scholar

[6]

J. Clay, Variations on equicontinuity, Duke Math. J., 30 (1963), 423-431.  doi: 10.1215/S0012-7094-63-03045-X.  Google Scholar

[7]

J. P. Clay, Proximity relations in transformation groups, Trans. Amer. Math. Soc., 108 (1963), 88-96.  doi: 10.1090/S0002-9947-1963-0154269-3.  Google Scholar

[8]

R. Ellis and W. H. Gottschalk, Homomorphisms of transformation groups, Trans. Amer. Math. Soc., 94 (1960), 258-271.  doi: 10.1090/S0002-9947-1960-0123635-1.  Google Scholar

[9]

S. Fomin, On dynamical systems with a purely point spectrum (in Russian), Dokl. Akad. Nauk SSSR (N.S.), 77 (1951), 29-32.   Google Scholar

[10]

H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math., 83 (1961), 573-601.  doi: 10.2307/2372899.  Google Scholar

[11]

H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory, 1 (1967), 1-49.  doi: 10.1007/BF01692494.  Google Scholar

[12]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, M. B. Porter Lectures, Princeton University Press, Princeton, N.J., 1981.  Google Scholar

[13]

W. H. He and Z. L. Zhou, A topologically mixing system whose measure center is a singleton, Acta Math. Sinica (Chin. Ser.), 45 (2002), 929-934.   Google Scholar

[14]

W. HuangS. Kolyada and G. Zhang, Analogues of Auslander-Yorke theorems for multi-sensitivity, Ergodic Theory Dynam. Systems, 38 (2018), 651-665.  doi: 10.1017/etds.2016.48.  Google Scholar

[15]

W. HuangD. KhilkoS. KolyadaA. Peris and G. Zhang, Finite intersection property and dynamical compactness, J. Dynam. Differential Equations, 30 (2018), 1221-1245.  doi: 10.1007/s10884-017-9600-8.  Google Scholar

[16]

J. Li, Dynamical characterization of C-sets and its application, Fund. Math., 216 (2012), 259-286.  doi: 10.4064/fm216-3-4.  Google Scholar

[17]

J. LiS. Tu and X. Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems, 35 (2015), 2587-2612.  doi: 10.1017/etds.2014.41.  Google Scholar

[18]

J. Li and X. D. Ye, Recent development of chaos theory in topological dynamics, Acta Math. Sin. (Engl. Ser.), 32 (2016), 83-114.  doi: 10.1007/s10114-015-4574-0.  Google Scholar

[19]

J. Li and Y. Yang, Stronger versions of sensitivity for minimal group actions, Acta Math. Sin. (Engl. Ser.), 37 (2021), 1933-1946.  doi: 10.1007/s10114-021-0511-6.  Google Scholar

[20]

J. LiX. Ye and T. Yu, Mean equicontinuity, complexity and applications, Discrete Contin. Dyn. Syst., 41 (2021), 359-393.  doi: 10.3934/dcds.2020167.  Google Scholar

[21]

T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115-2126.  doi: 10.1088/0951-7715/20/9/006.  Google Scholar

[22]

F. Tan and R. Zhang, On $\mathcal{F}$-sensitive pairs, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 1425-1435.  doi: 10.1016/S0252-9602(11)60328-7.  Google Scholar

[23]

J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, 257. Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[24]

J. Xiong, Chaos in a topologically transitive system, Sci. China Ser. A, 48 (2005), 929-939.  doi: 10.1007/BF02879075.  Google Scholar

[25]

X. Ye and T. Yu, Sensitivity, proximal extension and higher order almost automorphy, Trans. Amer. Math. Soc., 370 (2018), 3639-3662.  doi: 10.1090/tran/7100.  Google Scholar

[1]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[2]

Nancy Guelman, Jorge Iglesias, Aldo Portela. Examples of minimal set for IFSs. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5253-5269. doi: 10.3934/dcds.2017227

[3]

Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial & Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1

[4]

Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial & Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611

[5]

Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233

[6]

María Isabel Cortez, Samuel Petite. Realization of big centralizers of minimal aperiodic actions on the Cantor set. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2891-2901. doi: 10.3934/dcds.2020153

[7]

Gernot Greschonig. Real cocycles of point-distal minimal flows. Conference Publications, 2015, 2015 (special) : 540-548. doi: 10.3934/proc.2015.0540

[8]

Lan Wen. On the preperiodic set. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237

[9]

François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262

[10]

Chris Good, Robert Leek, Joel Mitchell. Equicontinuity, transitivity and sensitivity: The Auslander-Yorke dichotomy revisited. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2441-2474. doi: 10.3934/dcds.2020121

[11]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[12]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[13]

Marcin Studniarski. Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 389-398. doi: 10.3934/naco.2011.1.389

[14]

Tiago Carvalho, Luiz Fernando Gonçalves. A flow on $ S^2 $ presenting the ball as its minimal set. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4263-4280. doi: 10.3934/dcdsb.2020287

[15]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[16]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[17]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[18]

Yukio Kan-On. Structure on the set of radially symmetric positive stationary solutions for a competition-diffusion system. Conference Publications, 2013, 2013 (special) : 427-436. doi: 10.3934/proc.2013.2013.427

[19]

Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327

[20]

Sanjit Chatterjee, Chethan Kamath, Vikas Kumar. Private set-intersection with common set-up. Advances in Mathematics of Communications, 2018, 12 (1) : 17-47. doi: 10.3934/amc.2018002

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (28)
  • HTML views (25)
  • Cited by (0)

Other articles
by authors

[Back to Top]