[1]
|
R. Adami, C. Bardos, F. Golse and A. Teta, Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal., 40 (2004), 93-108.
|
[2]
|
R. Adami, F. Golse and A. Teta, Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys., 127 (2007), 1193-1220.
doi: 10.1007/s10955-006-9271-z.
|
[3]
|
Z. Ammari and S. Breteaux, Propagation of chaos for many-boson systems in one dimension with a point pair-interaction, Asymptot. Anal., 76 (2012), 123-170.
doi: 10.3233/ASY-2011-1064.
|
[4]
|
C. Bardos, F. Golse and N. J. Mauser, Weak coupling limit of the $N$-particle Schrödinger equation, Methods Appl. Anal., 7 (2000), 275-293.
doi: 10.4310/MAA.2000.v7.n2.a2.
|
[5]
|
N. Benedikter, M. Porta and B. Schlein, Effective Evolution Equations from Quantum Dynamics, SpringerBriefs in Mathematical Physics, 7. Springer, Cham, 2016.
doi: 10.1007/978-3-319-24898-1.
|
[6]
|
H. Bethe, Zur theorie der metalle, Zeitschrift Für Physik, 71 (1931), 205-226.
doi: 10.1007/BF01341708.
|
[7]
|
L. Boßmann, Derivation of the 1d nonlinear Schrödinger equation from the 3d quantum many-body dynamics of strongly confined bosons, J. Math. Phys., 60 (2019), 031902, 30.
doi: 10.1063/1.5075514.
|
[8]
|
L. Boßmann, N. Pavlović, P. Pickl and A. Soffer, Higher order corrections to the mean-field description of the dynamics of interacting Bosons, J. Stat. Phys., 178 (2020), 1362-1396.
doi: 10.1007/s10955-020-02500-8.
|
[9]
|
L. Boßmann and S. Teufel, Derivation of the 1d Gross-Pitaevskii equation from the 3d quantum many-body dynamics of strongly confined bosons, Ann. Henri Poincaré, 20 (2019), 1003-1049.
doi: 10.1007/s00023-018-0738-7.
|
[10]
|
C. Brennecke and B. Schlein, Gross-Pitaevskii dynamics for Bose-Einstein condensates, Anal. PDE, 12 (2019), 1513-1596.
doi: 10.2140/apde.2019.12.1513.
|
[11]
|
R. Carles, Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., 9 (2011), 937-964.
doi: 10.4310/CMS.2011.v9.n4.a1.
|
[12]
|
T. Chen, C. Hainzl, N. Pavlović and R. Seiringer, Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, Comm. Pure Appl. Math., 68 (2015), 1845-1884.
doi: 10.1002/cpa.21552.
|
[13]
|
T. Chen and N. Pavlović, Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from manybody dynamics in $d = 3$ based on spacetime norms, Ann. Henri Poincaré, 15 (2014), 543-588.
doi: 10.1007/s00023-013-0248-6.
|
[14]
|
X. Chen and J. Holmer, Focusing quantum many-body dynamics: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, Arch. Ration. Mech. Anal., 221 (2016), 631-676.
doi: 10.1007/s00205-016-0970-6.
|
[15]
|
X. Chen and J. Holmer, The derivation of the $\Bbb T^3$ energy-critical NLS from quantum many-body dynamics, Invent. Math., 217 (2019), 433-547.
doi: 10.1007/s00222-019-00868-3.
|
[16]
|
J. Chong, Dynamics of large boson systems with attractive interaction and a derivation of the cubic focusing NLS in $\mathbb{R}^3$, J. Math. Phys., 62 (2021), Paper No. 042106, 38 pp.
doi: 10.1063/1.5099113.
|
[17]
|
S. Dettmer, D. Hellweg, P. Ryytty, J. J. Arlt, W. Ertmer, K. Sengstock, D. S. Petrov, G. V. Shlyapnikov, H. Kreutzmann, L. Santos and M. Lewenstein, Observation of phase fluctuations in elongated bose-einstein condensates, Phys. Rev. Lett., 87 (2001), 160406.
|
[18]
|
V. Dunjko, V. Lorent and M. Olshanii, Bosons in cigar-shaped traps: Thomas-fermi regime, tonks-girardeau regime, and in between, Phys. Rev. Lett., 86 (2001), 5413-5416.
|
[19]
|
L. Erdös, B. Schlein and H.-T. Yau, Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Comm. Pure Appl. Math., 59 (2006), 1659-1741.
doi: 10.1002/cpa.20123.
|
[20]
|
L. Erdös, B. Schlein and H.-T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 167 (2007), 515-614.
doi: 10.1007/s00222-006-0022-1.
|
[21]
|
L. Erdös, B. Schlein and H.-T. Yau, Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential, J. Amer. Math. Soc., 22 (2009), 1099-1156.
doi: 10.1090/S0894-0347-09-00635-3.
|
[22]
|
L. Erdös, B. Schlein and H.-T. Yau, Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate, Ann. of Math., 172 (2010), 291-370.
doi: 10.4007/annals.2010.172.291.
|
[23]
|
L. Erdös and H.-T. Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys., 5 (2001), 1169-1205.
doi: 10.4310/ATMP.2001.v5.n6.a6.
|
[24]
|
J. Esteve, J. B. Trebbia, T. Schumm, A. Aspect, C. I. Westbrook and I. Bouchoule, Observations of density fluctuations in an elongated bose gas: Ideal gas and quasicondensate regimes, Prl, 96 (2006), 130403.
|
[25]
|
L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, English edition, Classics in Mathematics, Springer, Berlin, 2007.
|
[26]
|
J. Fröhlich, T.-P. Tsai and H.-T. Yau, On a classical limit of quantum theory and the non-linear Hartree equation, GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal., Special Volume, Part Ⅰ, (2000), 57–78.
doi: 10.1007/978-3-0346-0422-2_3.
|
[27]
|
M. Gaudin, The Bethe Wavefunction, Cambridge University Press, New York, 2014, Translated from the 1983 French original by Jean-Sébastien Caux.
doi: 10.1017/CBO9781107053885.
|
[28]
|
J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. Ⅰ, Comm. Math. Phys., 66 (1979), 37-76.
doi: 10.1007/BF01197745.
|
[29]
|
J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. Ⅱ, Comm. Math. Phys., 68 (1979), 45-68.
doi: 10.1007/BF01562541.
|
[30]
|
M. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Mathematical Phys., 1 (1960), 516-523.
doi: 10.1063/1.1703687.
|
[31]
|
F. Golse, On the dynamics of large particle systems in the mean field limit, In Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity, Lect. Notes Appl. Math. Mech., Springer, [Cham], 3 (2016), 1–144.
doi: 10.1007/978-3-319-26883-5_1.
|
[32]
|
M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, Ⅰ, Comm. Math. Phys., 324 (2013), 601-636.
doi: 10.1007/s00220-013-1818-7.
|
[33]
|
M. Grillakis and M. Machedon, Pair excitations and the mean field approximation of interacting bosons, Ⅱ, Comm. Partial Differential Equations, 42 (2017), 24-67.
doi: 10.1080/03605302.2016.1255228.
|
[34]
|
M. Grillakis, M. Machedon and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. Ⅱ, Adv. Math., 228 (2011), 1788-1815.
doi: 10.1016/j.aim.2011.06.028.
|
[35]
|
M. G. Grillakis, M. Machedon and D. Margetis, Second-order corrections to mean field evolution of weakly interacting bosons. Ⅰ, Comm. Math. Phys., 294 (2010), 273-301.
doi: 10.1007/s00220-009-0933-y.
|
[36]
|
B. Harrop-Griffiths, R. Killip and M. Visan, Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb{R})$, arXiv preprint, arXiv: 2003.05011.
|
[37]
|
K. Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974), 265-277.
doi: 10.1007/BF01646348.
|
[38]
|
A. D. Jackson and G. M. Kavoulakis, Lieb mode in a quasi-one-dimensional bose-einstein condensate of atoms, Prl, 89 (2002), 070403.
|
[39]
|
M. Jeblick, N. Leopold and P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation in two dimensions, Comm. Math. Phys., 372 (2019), 1-69.
doi: 10.1007/s00220-019-03599-x.
|
[40]
|
M. Jeblick and P. Pickl, Derivation of the time dependent two dimensional focusing NLS equation, J. Stat. Phys., 172 (2018), 1398-1426.
doi: 10.1007/s10955-018-2095-9.
|
[41]
|
R. Killip, M. Vișan and X. Zhang, Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., 28 (2018), 1062-1090.
doi: 10.1007/s00039-018-0444-0.
|
[42]
|
K. Kirkpatrick, B. Schlein and G. Staffilani, Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics, Amer. J. Math., 133 (2011), 91-130.
doi: 10.1353/ajm.2011.0004.
|
[43]
|
S. Klainerman and M. Machedon, On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Comm. Math. Phys., 279 (2008), 169-185.
doi: 10.1007/s00220-008-0426-4.
|
[44]
|
A. Knowles and P. Pickl, Mean-field dynamics: Singular potentials and rate of convergence, Comm. Math. Phys., 298 (2010), 101-138.
doi: 10.1007/s00220-010-1010-2.
|
[45]
|
H. Koch and D. Tataru, Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., 167 (2018), 3207-3313.
doi: 10.1215/00127094-2018-0033.
|
[46]
|
M. Lewin, P. T. Nam and N. Rougerie, Derivation of nonlinear Gibbs measures from many-body quantum mechanics, J. Éc. Polytech. Math., 2 (2015), 65-115.
doi: 10.5802/jep.18.
|
[47]
|
M. Lewin, P. T. Nam and N. Rougerie, The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases, Trans. Amer. Math. Soc., 368 (2016), 6131-6157.
doi: 10.1090/tran/6537.
|
[48]
|
E. H. Lieb, Exact analysis of an interacting Bose gas. Ⅱ. The excitation spectrum, Phys. Rev., 130 (1963), 1616-1624.
doi: 10.1103/PhysRev.130.1616.
|
[49]
|
E. H. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. Ⅰ. The general solution and the ground state, Phys. Rev., 130 (1963), 1605-1616.
doi: 10.1103/PhysRev.130.1605.
|
[50]
|
E. H. Lieb and R. Seiringer, Proof of bose-einstein condensation for dilute trapped gases, Phys. Rev. Lett., 88 (2002), 170409.
doi: 10.1103/PhysRevLett.88.170409.
|
[51]
|
E. H. Lieb, R. Seiringer, J. P. Solovej and J. Yngvason, The Mathematics of the Bose Gas and Its Condensation, Oberwolfach Seminars, 34. Birkhäuser Verlag, Basel, 2005.
|
[52]
|
E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the gross-pitaevskii energy functional, Phys. Rev. A, 61 (2000), 043602.
doi: 10.1103/PhysRevA.61.043602.
|
[53]
|
E. H. Lieb, R. Seiringer and J. Yngvason, One-dimensional bosons in three-dimensional traps, PRL, 91 (2003), 150401.
|
[54]
|
E. H. Lieb, R. Seiringer and J. Yngvason, One-dimensional behavior of dilute, trapped Bose gases, Comm. Math. Phys., 244 (2004), 347-393.
doi: 10.1007/s00220-003-0993-3.
|
[55]
|
E. H. Lieb and J. Yngvason, Ground state energy of the low density bose gas, Phys. Rev. Lett., 80 (1998), 2504-2507.
doi: 10.1103/PhysRevLett.80.2504.
|
[56]
|
D. Mendelson, A. R. Nahmod, N. Pavlović, M. Rosenzweig and G. Staffilani, Poisson commuting energies for a system of infinitely many bosons, arXiv preprint, arXiv: 1910.06959.
|
[57]
|
D. Mitrouskas, Derivation of Mean Field Equations and Their Next-Order Corrections: Bosons and Fermions, PhD thesis, LMU München, 2017.
|
[58]
|
P. T. Nam and M. Napiórkowski, Norm approximation for many-body quantum dynamics: Focusing case in low dimensions, Adv. Math., 350 (2019), 547-587.
doi: 10.1016/j.aim.2019.04.066.
|
[59]
|
M. Napiórkowski, Dynamics of interacting bosons: A compact review, arXiv preprint, arXiv: 2101.04594.
|
[60]
|
M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett., 81 (1998), 938-941.
|
[61]
|
M. Olshanii and V. Dunjko, Short-distance correlation properties of the lieb-liniger system and momentum distributions of trapped one-dimensional atomic gases, PRL, 91 (2003), 090401.
|
[62]
|
B. G. Pachpatte, Inequalities for Differential and Integral Equations, Mathematics in Science and Engineering, 197. Academic Press, Inc., San Diego, CA, 1998.
|
[63]
|
D. S. Petrov, D. M. Gangardt and G. V. Shlyapnikov, Low-dimensional trapped gases, J. Phys. Ⅳ France, 116 (2004), 5-44.
doi: 10.1051/jp4:2004116001.
|
[64]
|
D. S. Petrov, G. V. Shlyapnikov and J. T. M. Walraven, Regimes of quantum degeneracy in trapped 1D gases, Phys. Rev. Lett., 85 (2000), 3745-3749.
|
[65]
|
P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation without positivity condition on the interaction, J. Stat. Phys., 140 (2010), 76-89.
doi: 10.1007/s10955-010-9981-0.
|
[66]
|
P. Pickl, A simple derivation of mean field limits for quantum systems, Lett. Math. Phys., 97 (2011), 151-164.
doi: 10.1007/s11005-011-0470-4.
|
[67]
|
P. Pickl, Derivation of the time dependent Gross-Pitaevskii equation with external fields, Rev. Math. Phys., 27 (2015), 1550003, 45 pp.
doi: 10.1142/S0129055X15500038.
|
[68]
|
M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅱ. Fourier Analysis, Self-Adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
|
[69]
|
M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd edition, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
|
[70]
|
S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer and A. Aspect, Momentum spectroscopy of 1D phase fluctuations in bose-einstein condensates, PRL, 91 (2003), 010405.
|
[71]
|
I. Rodnianski and B. Schlein, Quantum fluctuations and rate of convergence towards mean field dynamics, Commun. Math. Phys., 291 (2009), 31-61.
doi: 10.1007/s00220-009-0867-4.
|
[72]
|
M. Rosenzweig, Mean-field convergence of point vortices without regularity, arXiv preprint, arXiv: 2004.04140.
|
[73]
|
M. Rosenzweig, Mean-field convergence of systems of particles with Coulomb interactions in higher dimensions without regularity, arXiv preprint, arXiv: 2010.10009.
|
[74]
|
N. Rougerie, Scaling limits of bosonic ground states, from many-body to nonlinear Schrödinger, EMS Surv. Math. Sci., 7 (2020), 253-408.
doi: 10.4171/emss/40.
|
[75]
|
B. Schlein, Derivation of effective evolution equations from microscopic quantum dynamics, In Evol. Equations, Clay Math. Proc., Amer. Math. Soc., Providence, RI, 17 (2013), 511–572.
|
[76]
|
R. Seiringer and J. Yin, The Lieb-Liniger model as a limit of dilute bosons in three dimensions, Comm. Math. Phys., 284 (2008), 459-479.
doi: 10.1007/s00220-008-0521-6.
|
[77]
|
R. Seiringer, J. Yngvason and V. A. Zagrebnov, Disordered bose–einstein condensates with interaction in one dimension, Journal of Statistical Mechanics: Theory and Experiment, 2012 (2012), P11007.
doi: 10.1088/1742-5468/2012/11/p11007.
|
[78]
|
V. Sohinger, A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on ${\mathbb{T}}^3$ from the dynamics of many-body quantum systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1337-1365.
doi: 10.1016/j.anihpc.2014.09.005.
|
[79]
|
H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., 52 (1980), 569-615.
doi: 10.1103/RevModPhys.52.569.
|
[80]
|
T. Tao, Nonlinear Dispersive Equations, Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.
doi: 10.1090/cbms/106.
|
[81]
|
B. L. Tolra, K. M. O'Hara, J. H. Huckans, W. D. Phillips, S. L. Rolston and J. V. Porto, Observation of reduced three-body recombination in a correlated 1D degenerate bose gas, Phys. Rev. Lett., 92 (2004), 190401.
|
[82]
|
V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Ž. Èksper. Teoret. Fiz., 61 (1971), 118-134.
|