We consider the low regularity well-posedness problem for the Maxwell-Dirac system in 3+1 dimensions:
$ \begin{align*} \partial^{\mu} F_{\mu \nu} & = - \langle \psi, \alpha_{\nu} \psi \rangle \ \\ -i \alpha^{\mu} \partial_{\mu} \psi & = A_{\mu} \alpha^{\mu} \psi \, , \end{align*} $
where $ F_{\mu \nu} = \partial^{\mu} A_{\nu} - \partial^{\nu} A_{\mu} $, and $ \alpha^{\mu} $ are the 4x4 Dirac matrices. We assume the temporal gauge $ A_0 = 0 $ and make use of the fact that some of the nonlinearities fulfill a null condition. Because we work in the temporal gauge we also apply a method, which was used by Tao for the Yang-Mills system.
Citation: |
[1] | P. d'Ancona, D. Foschi and S. Selberg, Atlas of products for wave-Sobolev spaces on $\mathbb{R}^{1+3}$, Trans. Amer. Math. Soc., 364 (2012), 31-63. doi: 10.1090/S0002-9947-2011-05250-5. |
[2] | P. d'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local well-posedness of the Maxwell-Dirac system, Amer. J. Math., 132 (2010), 771-839. doi: 10.1353/ajm.0.0118. |
[3] | P. d'Ancona and S. Selberg, Global well-posedness of the Maxwell-Dirac system in two space dimensions, J. Funct. Anal., 260 (2011), 2300-2365. doi: 10.1016/j.jfa.2010.12.010. |
[4] | N. Bournaveas, Local existence for the Maxwell-Dirac equations in three space dimensions, Comm. Partial Differential Equations, 21 (1996), 693-720. doi: 10.1080/03605309608821204. |
[5] | H. Huh and S.-J. Oh, Low regularity solutions to the Chern-Simons-Dirac and the Chern-Simons-Higgs equations in the Lorenz gauge, Comm. Partial Differential Equations, 41 (2016), 375-397. doi: 10.1080/03605302.2015.1132730. |
[6] | S. Klainerman and M. Machedon, (with appendices by J. Bourgain and D. Tataru), Remark on strichartz-type inequalities, Internat. Math. Res. Notices, (1996), 201–220. doi: 10.1155/S1073792896000153. |
[7] | S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4. |
[8] | S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295. doi: 10.1142/S0219199702000634. |
[9] | N. Masmoudi and K. Nakanishi, Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrödinger, Int. Math. Res. No., 13 (2003), 697-734. doi: 10.1155/S107379280320310X. |
[10] | N. Masmoudi and K. Nakanishi, Uniqueness of finite energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations, Commun. Math. Phys., 243 (2003), 123-136. doi: 10.1007/s00220-003-0951-0. |
[11] | S. Selberg, Anisotropic bilinear $L^2$ estimates related to the 3D wave equation, Int. Math. Res. Not. IMRN, (2008), Art. ID rnn 107, 63 pp. doi: 10.1093/imrn/rnn107. |
[12] | S. Selberg and A. Tesfahun, Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz gauge, J. Eur. Math. Soc., 18 (2016), 1729-1752. doi: 10.4171/JEMS/627. |
[13] | S. Selberg and A. Tesfahun, Ill-posedness of the Maxwell-Dirac system below charge in space dimension three and lower, Nonlinear Differential Equations Appl., 28 (2021), Paper No. 42, 20 pp. doi: 10.1007/s00030-021-00703-w. |
[14] | S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Comm. PDE, 35 (2010), 1029-1057. |
[15] | T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm, J. Diff. Equ., 189 (2003), 366-382. |
[16] | T. Tao, Multilinear weighted convolution of $L^2$-functions and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 838-908. doi: 10.1353/ajm.2001.0035. |