One considers a system on $ \mathbb{C}^2 $ close to an invariant curve which can be viewed as a generalization of the semi-standard map to a trigonometric polynomial with many Fourier modes. The radius of convergence of an analytic linearization of the system around the invariant curve is bounded by the exponential of the negative Brjuno sum of $ d\alpha $, where $ d\in \mathbb{N}^* $ and $ \alpha $ is the frequency of the linear part, and the error function is non decreasing with respect to the smallest coefficient of the trigonometric polynomial.
Citation: |
[1] |
J. Aurouet, Normalisation de Champs de Vecteurs Holomorphes et Équations Différentielles Implicites, Ph.D thesis, University of Nice, 2013
![]() |
[2] |
A. Berretti and G. Gentile, Bryuno function and the standard map, Comm. Math. Phys., 220 (2001), 623-656.
doi: 10.1007/s002200100456.![]() ![]() ![]() |
[3] |
A. Berretti and G. Gentile, Periodic and quasi-periodic orbits for the standard map, Comm. Math. Phys., 231 (2002), 135-156.
doi: 10.1007/s00220-002-0674-7.![]() ![]() ![]() |
[4] |
A. Berretti, S. Marmi and D. Sauzin, Limit at resonances of linearizations of some complex analytic dynamical systems, Ergodic Theory Dynam. Systems, 20 (2000), 963-990.
doi: 10.1017/S0143385700000547.![]() ![]() ![]() |
[5] |
A. D. Brjuno, Analytic forms of differential equations, Trudy Moskov. Mat. Obšč., 25 (1971), 119–262; 26 (1972), 199–239.
![]() ![]() |
[6] |
X. Buff and A. Chéritat, Upper bound for the size of quadratic Siegel disks, Invent. Math., 156 (2004), 1-24.
doi: 10.1007/s00222-003-0331-6.![]() ![]() ![]() |
[7] |
X. Buff and A. Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks, Ann. of Math., 164 (2006), 265-312.
doi: 10.4007/annals.2006.164.265.![]() ![]() ![]() |
[8] |
T. Carletti and S. Marmi, Linearization of analytic and non analytic germs of diffeomorphisms of $ (\mathbb{C},0)$, Bull. Soc. Math. France, 128 (2000), 69-85.
doi: 10.24033/bsmf.2363.![]() ![]() ![]() |
[9] |
C. Carminati and S. Marmi, Linearization of germs: Regular dependence on the multiplier, Bull. Soc. Math. France, 136 (2008), 533-564.
doi: 10.24033/bsmf.2565.![]() ![]() ![]() |
[10] |
C. Chavaudret, Normal form of holomorphic vector fields with an invariant torus under Brjuno's A condition, Ann. Inst. Fourier, 66 (2016), 1987-2020.
doi: 10.5802/aif.3055.![]() ![]() ![]() |
[11] |
C. Chavaudret and S. Marmi, Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition, J. Mod. Dyn., 6 (2012), 59-78.
doi: 10.3934/jmd.2012.6.59.![]() ![]() ![]() |
[12] |
D. Cheraghi and A. Chéritat, A proof of the Marmi-Moussa-Yoccoz conjecture for rotation numbers of high type, Invent. Math., 202 (2015), 677-742.
doi: 10.1007/s00222-014-0576-2.![]() ![]() ![]() |
[13] |
A. M. Davie, The critical function for the semistandard map, Nonlinearity, 7 (1994), 219-229.
doi: 10.1088/0951-7715/7/1/009.![]() ![]() ![]() |
[14] |
G. Gentile, Resummation of perturbation series and reducibility for Bryuno skew-product flows, J. Stat. Phys., 125 (2006), 321-361.
doi: 10.1007/s10955-006-9127-6.![]() ![]() ![]() |
[15] |
A. Giorgilli and S. Marmi, Improved estimates for the convergence radius in the Poincaré-Siegel problem, Discrete Contin. Dyn. Syst. Ser. S 3, 4 (2010), 601-621.
doi: 10.3934/dcdss.2010.3.601.![]() ![]() ![]() |
[16] |
A. Giorgilli, U. Locatelli and M. Sansottera, Improved convergence estimates for the Schröder-Siegel problem, Ann. Mat. Pura Appl., 194 (2015), 995-1013.
doi: 10.1007/s10231-014-0408-4.![]() ![]() ![]() |
[17] |
J. M. Greene and I. C. Percival, Hamiltonian maps in the complex plane, Phys. D, 3 (1981), 530-548.
doi: 10.1016/0167-2789(81)90038-5.![]() ![]() ![]() |
[18] |
J. Lopes Dias, A normal form theorem for Brjuno skew-systems through renormalization, J. Differential Equations, 230 (2006), 1-23.
doi: 10.1016/j.jde.2006.07.021.![]() ![]() ![]() |
[19] |
S. Marmi, Critical functions for complex analytic maps, J. Phys. A, 23 (1990), 3447-3474.
doi: 10.1088/0305-4470/23/15/019.![]() ![]() ![]() |
[20] |
S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties, Comm. Math. Phys., 186 (1997), 265-293.
doi: 10.1007/s002200050110.![]() ![]() ![]() |
[21] |
S. Marmi and J. Stark, On the standard map critical function, Nonlinearity, 5 (1992), 743-761.
doi: 10.1088/0951-7715/5/3/007.![]() ![]() ![]() |
[22] |
L. Stolovitch, Singular complete integrability, Inst. Hautes Études Sci. Publ. Math., 91 (2001), 133-210.
![]() ![]() |
[23] |
J-C. Yoccoz, Petits diviseurs en dimension 1, Astérisque, 231 (1995), 1-88.
![]() |
The Brjuno function of