July  2022, 42(7): 3187-3232. doi: 10.3934/dcds.2022014

Introducing sub-Riemannian and sub-Finsler billiards

1. 

Universität Heidelberg, Mathematisches Institut, Mathematikon, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

2. 

Utrecht University, Department of Mathematics, Budapestlaan 6, 3584 Utrecht, The Netherlands

*Corresponding author: Álvaro del Pino

Received  December 2020 Revised  November 2021 Published  July 2022 Early access  March 2022

Fund Project: The first author is supported by Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster), as well as by SFB/TRR 191 "Symplectic Structures in Geometry, Algebra and Dynamics" funded by the DFG. The second author was supported by the NWO 016.Veni.192.013 grant for the duration of the project

We define billiards in the context of sub-Finsler Geometry. We provide symplectic and variational (or rather, control theoretical) descriptions of the problem and show that they coincide. We then discuss several phenomena in this setting, including the failure of the reflection law to be well-defined at singular points of the boundary distribution, the appearance of gliding and creeping orbits, and the behavior of reflections at wavefronts.

We then study some concrete tables in $ 3 $-dimensional euclidean space endowed with the standard contact structure. These can be interpreted as planar magnetic billiards, of varying magnetic strength, for which the magnetic strength may change under reflection. For each table we provide various results regarding periodic trajectories, gliding orbits, and creeping orbits.

Citation: Lucas Dahinden, Álvaro del Pino. Introducing sub-Riemannian and sub-Finsler billiards. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3187-3232. doi: 10.3934/dcds.2022014
References:
[1]

A. Agrachev, Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 1–12 (2001).

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-06404-7.

[3]

A. A. Agrachev and A. V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 13 (1996), 635-690.  doi: 10.1016/s0294-1449(16)30118-4.

[4]

S. Artstein-AvidanR. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.  doi: 10.1215/00127094-2794999.

[5]

S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Mat. Res. Not., 2014 (2014), 165-193.  doi: 10.1093/imrn/rns216.

[6]

D. Barilari, U. Boscain and D. Cannarsa, On the induced geometry on surfaces in 3D contact sub-Riemannian manifolds, ESAIM: Control, Optimisation and Calculus of Variations, 28 (2022), Paper No. 9, 28 pp. doi: 10.1051/cocv/2021104.

[7]

D. Barilari, U. Boscain, D. Cannarsa and K. Habermann, Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds, Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 57 (2021), 1388–1410. doi: 10.1214/20-aihp1124.

[8]

A. Belotto da Silva, A. Figalli, A. Parusinski and L. Rifford, Strong Sard Conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3, preprint, arXiv: 1810.03347.

[9]

Y. Colin de VerdièreL. Hillairet and E. Trélat, Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case, Duke Math. J., 167 (2018), 109-174.  doi: 10.1215/00127094-2017-0037.

[10]

H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008. doi: 10.1017/CBO9780511611438.

[11]

E. Giroux, Convexitè en topologie de contact, Comment. Math. Helv., 66 (1991), 637-677.  doi: 10.1007/BF02566670.

[12]

L. Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom., 36 (1992), 551-589.  doi: 10.4310/jdg/1214453181.

[13]

B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and billiards, Advances in Mathematics, 221 (2009), 1364-1396.  doi: 10.1016/j.aim.2009.02.010.

[14]

R. Montgomery, Abnormal minimizers, SIAM Journal on Control and Optimization, 32 (1994), 1605-1620.  doi: 10.1137/S0363012993244945.

[15]

R. Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, (2002). doi: 10.1090/surv/091.

[16]

P. Pansu, Submanifolds and differential forms on Carnot manifolds, after M. Gromov and M. Rumin, preprint, arXiv: 1604.06333.

[17]

L. Rizzi and T. Rossi, Heat content asymptotics for sub-Riemannian manifolds, J. Math. Pures Appl., 148 (2021), 267–307, preprint, arXiv: 2005.01666. doi: 10.1016/j.matpur.2020.12.004.

[18]

N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal., 28 (2018), 1420-1486.  doi: 10.1007/s00039-018-0462-y.

[19]

I. Zelenko, Nonregular abnormal extremals of 2-distributions: Existence, second variation and rigidity, J. Dynamical and Control systems, 5 (1999), 347–383. doi: 10.1023/A:1021766616913.

show all references

References:
[1]

A. Agrachev, Compactness for sub-Riemannian length minimizers and subanalyticity, Rend. Sem. Mat. Univ. Pol. Torino, 56 (1998), 1–12 (2001).

[2]

A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer-Verlag Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-06404-7.

[3]

A. A. Agrachev and A. V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 13 (1996), 635-690.  doi: 10.1016/s0294-1449(16)30118-4.

[4]

S. Artstein-AvidanR. Karasev and Y. Ostrover, From symplectic measurements to the Mahler conjecture, Duke Math. J., 163 (2014), 2003-2022.  doi: 10.1215/00127094-2794999.

[5]

S. Artstein-Avidan and Y. Ostrover, Bounds for Minkowski billiard trajectories in convex bodies, Int. Mat. Res. Not., 2014 (2014), 165-193.  doi: 10.1093/imrn/rns216.

[6]

D. Barilari, U. Boscain and D. Cannarsa, On the induced geometry on surfaces in 3D contact sub-Riemannian manifolds, ESAIM: Control, Optimisation and Calculus of Variations, 28 (2022), Paper No. 9, 28 pp. doi: 10.1051/cocv/2021104.

[7]

D. Barilari, U. Boscain, D. Cannarsa and K. Habermann, Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds, Annales de l'Institut Henri Poincaré Probabilités et Statistiques, 57 (2021), 1388–1410. doi: 10.1214/20-aihp1124.

[8]

A. Belotto da Silva, A. Figalli, A. Parusinski and L. Rifford, Strong Sard Conjecture and regularity of singular minimizing geodesics for analytic sub-Riemannian structures in dimension 3, preprint, arXiv: 1810.03347.

[9]

Y. Colin de VerdièreL. Hillairet and E. Trélat, Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case, Duke Math. J., 167 (2018), 109-174.  doi: 10.1215/00127094-2017-0037.

[10]

H. Geiges, An Introduction to Contact Topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, 2008. doi: 10.1017/CBO9780511611438.

[11]

E. Giroux, Convexitè en topologie de contact, Comment. Math. Helv., 66 (1991), 637-677.  doi: 10.1007/BF02566670.

[12]

L. Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom., 36 (1992), 551-589.  doi: 10.4310/jdg/1214453181.

[13]

B. Khesin and S. Tabachnikov, Pseudo-Riemannian geodesics and billiards, Advances in Mathematics, 221 (2009), 1364-1396.  doi: 10.1016/j.aim.2009.02.010.

[14]

R. Montgomery, Abnormal minimizers, SIAM Journal on Control and Optimization, 32 (1994), 1605-1620.  doi: 10.1137/S0363012993244945.

[15]

R. Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, (2002). doi: 10.1090/surv/091.

[16]

P. Pansu, Submanifolds and differential forms on Carnot manifolds, after M. Gromov and M. Rumin, preprint, arXiv: 1604.06333.

[17]

L. Rizzi and T. Rossi, Heat content asymptotics for sub-Riemannian manifolds, J. Math. Pures Appl., 148 (2021), 267–307, preprint, arXiv: 2005.01666. doi: 10.1016/j.matpur.2020.12.004.

[18]

N. Savale, A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal., 28 (2018), 1420-1486.  doi: 10.1007/s00039-018-0462-y.

[19]

I. Zelenko, Nonregular abnormal extremals of 2-distributions: Existence, second variation and rigidity, J. Dynamical and Control systems, 5 (1999), 347–383. doi: 10.1023/A:1021766616913.

Figure 1.  The $ n $-gon from Lemma 5.10, with $ n = 6 $, and an arc connecting two of the boundary points (in this case, adjacent also in the hexagon, so $ m = 1 $). The lightly shaded region must have the same area as the sum of the dark regions
Figure 2.  The situation described in Subsection 5.5.3. A projection of a half-line that reflects at a point in $ H $, and its continuation after the reflection point
Figure 3.  The bigon from Lemma 5.16 under the assumption that $ q_1 $ appears in the arc before the tangency with respect to the origin. The lightly shaded area is positive and the dark area is negative. In this case, the latter is larger and therefore the trajectory hits the bottom boundary; that is, $ \psi $ is not in the range described in the Lemma
Figure 4.  The bigon from Lemma 5.16 under the assumption that $ q_1 $ lies beyond the tangency point from the origin. Here the positive area is larger than the negative area, so we obtain one of the trajectories described in the Lemma
[1]

Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155

[2]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure and Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[3]

Erlend Grong, Alexander Vasil’ev. Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover. Journal of Geometric Mechanics, 2011, 3 (2) : 225-260. doi: 10.3934/jgm.2011.3.225

[4]

Yunlong Huang, P. S. Krishnaprasad. Sub-Riemannian geometry and finite time thermodynamics Part 1: The stochastic oscillator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1243-1268. doi: 10.3934/dcdss.2020072

[5]

Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015

[6]

Paul W. Y. Lee, Chengbo Li, Igor Zelenko. Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 303-321. doi: 10.3934/dcds.2016.36.303

[7]

Beatrice Abbondanza, Stefano Biagi. Riesz-type representation formulas for subharmonic functions in sub-Riemannian settings. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3161-3192. doi: 10.3934/cpaa.2021101

[8]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[9]

Margarida Camarinha, Fátima Silva Leite, Peter Crouch. Riemannian cubics close to geodesics at the boundaries. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022003

[10]

Sheena D. Branton. Sub-actions for young towers. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 541-556. doi: 10.3934/dcds.2008.22.541

[11]

Richard Evan Schwartz. Unbounded orbits for outer billiards I. Journal of Modern Dynamics, 2007, 1 (3) : 371-424. doi: 10.3934/jmd.2007.1.371

[12]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[13]

Rafael Alcaraz Barrera. Topological and ergodic properties of symmetric sub-shifts. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4459-4486. doi: 10.3934/dcds.2014.34.4459

[14]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic and Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[15]

Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639

[16]

Yana Nec, Vladimir A Volpert, Alexander A Nepomnyashchy. Front propagation problems with sub-diffusion. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 827-846. doi: 10.3934/dcds.2010.27.827

[17]

Daniel Genin. Research announcement: Boundedness of orbits for trapezoidal outer billiards. Electronic Research Announcements, 2008, 15: 71-78. doi: 10.3934/era.2008.15.71

[18]

Richard Evan Schwartz. Research announcement: unbounded orbits for outer billiards. Electronic Research Announcements, 2007, 14: 1-6. doi: 10.3934/era.2007.14.1

[19]

Misha Bialy. Maximizing orbits for higher-dimensional convex billiards. Journal of Modern Dynamics, 2009, 3 (1) : 51-59. doi: 10.3934/jmd.2009.3.51

[20]

Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (166)
  • HTML views (135)
  • Cited by (0)

Other articles
by authors

[Back to Top]