
-
Previous Article
Polynomial ergodic averages for certain countable ring actions
- DCDS Home
- This Issue
-
Next Article
Multiplicity results for elliptic problems involving nonlocal integrodifferential operators without Ambrosetti-Rabinowitz condition
Linear stability of exact solutions for the generalized Kaup-Boussinesq equation and their dynamical evolutions
1. | Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China |
2. | School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China |
3. | College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
The integrability, classification of traveling wave solutions and stability of exact solutions for the generalized Kaup-Boussinesq equation are studied by prolongation structure technique and linear stability analysis. Firstly, it is proved that the generalized Kaup-Boussinesq equation is completely integrable in sense of having Lax pair. Secondly, the complete classification of exact traveling wave solutions of the generalized Kaup-Boussinesq equation are given and a family of exact solutions are proposed. Finally, the stability of these exact solutions are investigated by linear stability analysis and dynamical evolutions, and some stable traveling wave solutions are found. It is shown that the results of linear stability analysis are in excellent agreement with the results from dynamical evolutions.
References:
[1] |
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998.![]() ![]() ![]() |
[2] |
R. Balakrishnan and I. I. Satija,
Solitons in Bose-Einstein condensates, Pramana J. Phys., 77 (2011), 929-947.
doi: 10.1007/s12043-011-0187-z. |
[3] |
C. Charlier and J. Lenells, The "good" Boussinesq equation: A Riemann-Hilbert approach, Indiana Univ. Math. J., to appear 2021, arXiv: 2003.02777, 48 pp. |
[4] |
C. Charlier, J. Lenells and D. S. Wang, The "good" Boussinesq equation: Long-time asymptotics, Analysis & PDE, to appear 2021, arXiv: 2003.04789, 34 pp. |
[5] |
T. Congy, S. K. Ivanov, A. M. Kamchatnov and N. Pavloff, Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion, Chaos, 27 (2017), Paper No. 083107, 12 pp.
doi: 10.1063/1.4997052. |
[6] |
A. Constantin,
Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commu. Pure Appl. Anal., 11 (2012), 1397-1406.
doi: 10.3934/cpaa.2012.11.1397. |
[7] |
A. Constantin and W. Strauss,
Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[8] |
A. Constantin and W. Strauss,
Periodic traveling gravity water waves with discontinuous vorticity, Arch. Rational Mech. Anal., 202 (2011), 133-175.
doi: 10.1007/s00205-011-0412-4. |
[9] |
P. Deift, C. Tomei and E. Trubowitz,
Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math., 35 (1982), 567-628.
doi: 10.1002/cpa.3160350502. |
[10] |
D. Dutykh and D. Ionescu-Kruse,
Effects of vorticity on the travelling waves of some shallow water two-component systems, Discrete Contin. Dyn. Syst., 39 (2019), 5521-5541.
doi: 10.3934/dcds.2019225. |
[11] |
G. A. El, R. H. J. Grimshaw and A. M. Kamchatnov,
Wave breaking and the generation of undular bores in an integrable shallow water system, Studies Appl. Math., 114 (2005), 395-411.
doi: 10.1111/j.0022-2526.2005.01560.x. |
[12] |
G. A. El, R. H. J. Grimshaw and M. V. Pavlov,
Integrable shallow-water equations and undular bores, Studies Appl. Math., 106 (2001), 157-186.
doi: 10.1111/1467-9590.00163. |
[13] |
C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura,
Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.
doi: 10.1103/PhysRevLett.19.1095. |
[14] |
V. S. Gerdjikov, E. V. Doktorov and J. Yang, Adiabatic interaction of N ultrashort solitons: Universality of the complex Toda chain model, Phys. Rev. E, 64 (2001), Paper No. 056617, 15 pp.
doi: 10.1103/PhysRevE.64.056617. |
[15] |
J. Haberlin and T. Lyons,
Solitons of shallow-water models from energy-dependent spectral problems, Eur. Phys. J. Plus, 133 (2018), 16.
doi: 10.1140/epjp/i2018-11848-8. |
[16] |
M. A. Helal,
Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos, Solitons and Fractals, 13 (2002), 1917-1929.
doi: 10.1016/S0960-0779(01)00189-8. |
[17] |
R. Ivanov,
Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.
doi: 10.1016/j.wavemoti.2009.06.012. |
[18] |
R. Ivanov and T. Lyons, Integrable models for shallow water with energy dependent spectral problems, J. Nonlinear Math. Phys., 19 (2012), Paper No. 1240008, 17 pp.
doi: 10.1142/S1402925112400086. |
[19] |
M. Jaulent and C. Jean,
The inverse $s$-wave scattering problem for a class of potentials depending on energy, Comm. Math. Phys., 28 (1972), 177-220.
doi: 10.1007/BF01645775. |
[20] |
A. M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations: An Introductory Course, World Scientific Publishing, 2000.
doi: 10.1142/9789812792259. |
[21] |
A. M. Kamchatnov, R. A. Kraenkel and B. A. Umarov,
Asymptotic soliton train solutions of Kaup-Boussinesq equations, Wave Motion, 38 (2003), 355-365.
doi: 10.1016/S0165-2125(03)00062-3. |
[22] |
D. J. Kaup,
A higher-order water-wave equation and the method for solving it, Progr. Theoret. Phys., 54 (1975), 396-408.
doi: 10.1143/PTP.54.396. |
[23] |
V. B. Matveev and M. I. Yavor,
Almost periodic N-soliton solutions of the nonlinear hydrodynamic Kaup equation, Ann. Inst. H. Poincar'e Sect. A, 31 (1979), 25-41.
|
[24] |
K. Nishinary, K. Abe and J. Satsuma,
A new-type of soliton behavior in a two dimensional plasma system, J. Phys. Soc. Japan, 62 (1993), 2021-2029.
doi: 10.1143/JPSJ.62.2021. |
[25] |
M. Pavlov,
Integrable systems and metrics of constant curvature, J. Nonlinear Math. Phys., 9 (2002), 173-191.
doi: 10.2991/jnmp.2002.9.s1.15. |
[26] |
D. H. Sattinger and J. Szmigielski,
A Riemann-Hilbert problem for an energy dependent Schrödinger operator, Inverse Problems, 12 (1996), 1003-1025.
doi: 10.1088/0266-5611/12/6/014. |
[27] |
K. Singla and M. Rana, Exact solutions and conservation laws of multi Kaup-Boussinesq system with fractional order, Analysis Math. Phys., 11 (2021), Paper No. 30, 15 pp.
doi: 10.1007/s13324-020-00467-z. |
[28] |
H. D. Wahlquist and F. B. Estabrook,
Prolongation structures of nonlinear evolution equations, J. Math. Phys., 16 (1975), 1-7.
doi: 10.1063/1.522396. |
[29] |
D.-S. Wang,
Integrability of the coupled KdV equations derived from two-layer fluids: Prolongation structures and Miura transformations, Nonlinear Anal., 73 (2010), 270-281.
doi: 10.1016/j.na.2010.03.021. |
[30] |
D.-S. Wang and J. Liu,
Integrability aspects of some two-component KdV systems, Appl. Math. Lett., 79 (2018), 211-219.
doi: 10.1016/j.aml.2017.12.018. |
[31] |
B. Wang, Z. Zhang and B. Li,
Soliton molecules and some hybrid solutions for the nonlinear Schrödinger equation, Chin. Phys. Lett., 37 (2020), 030501.
doi: 10.1088/0256-307X/37/3/030501. |
[32] |
J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, Society for Industrial and Applied Mathematics, 2010.
doi: 10.1137/1.9780898719680. |
[33] |
Y. S. Zhang and J. S. He,
Bound-state soliton solutions of the nonlinear Schrödinger equation and their asymmetric decompositions, Chin. Phys. Lett., 36 (2019), 030201.
doi: 10.1088/0256-307X/36/3/030201. |
[34] |
V. E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators, Sov. Phys.-JETP, 38 (1974), 108-110; translated from Zh. Eksp. Teor. Fiz., 65 (1973), 219-225. |
[35] |
J. Zhou, L. Tian and X. Fan,
Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system, Nonlinear Analy.: Real World Appl., 11 (2010), 3229-3235.
doi: 10.1016/j.nonrwa.2009.11.017. |
show all references
References:
[1] |
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998.![]() ![]() ![]() |
[2] |
R. Balakrishnan and I. I. Satija,
Solitons in Bose-Einstein condensates, Pramana J. Phys., 77 (2011), 929-947.
doi: 10.1007/s12043-011-0187-z. |
[3] |
C. Charlier and J. Lenells, The "good" Boussinesq equation: A Riemann-Hilbert approach, Indiana Univ. Math. J., to appear 2021, arXiv: 2003.02777, 48 pp. |
[4] |
C. Charlier, J. Lenells and D. S. Wang, The "good" Boussinesq equation: Long-time asymptotics, Analysis & PDE, to appear 2021, arXiv: 2003.04789, 34 pp. |
[5] |
T. Congy, S. K. Ivanov, A. M. Kamchatnov and N. Pavloff, Evolution of initial discontinuities in the Riemann problem for the Kaup-Boussinesq equation with positive dispersion, Chaos, 27 (2017), Paper No. 083107, 12 pp.
doi: 10.1063/1.4997052. |
[6] |
A. Constantin,
Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity, Commu. Pure Appl. Anal., 11 (2012), 1397-1406.
doi: 10.3934/cpaa.2012.11.1397. |
[7] |
A. Constantin and W. Strauss,
Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557.
doi: 10.1002/cpa.20299. |
[8] |
A. Constantin and W. Strauss,
Periodic traveling gravity water waves with discontinuous vorticity, Arch. Rational Mech. Anal., 202 (2011), 133-175.
doi: 10.1007/s00205-011-0412-4. |
[9] |
P. Deift, C. Tomei and E. Trubowitz,
Inverse scattering and the Boussinesq equation, Comm. Pure Appl. Math., 35 (1982), 567-628.
doi: 10.1002/cpa.3160350502. |
[10] |
D. Dutykh and D. Ionescu-Kruse,
Effects of vorticity on the travelling waves of some shallow water two-component systems, Discrete Contin. Dyn. Syst., 39 (2019), 5521-5541.
doi: 10.3934/dcds.2019225. |
[11] |
G. A. El, R. H. J. Grimshaw and A. M. Kamchatnov,
Wave breaking and the generation of undular bores in an integrable shallow water system, Studies Appl. Math., 114 (2005), 395-411.
doi: 10.1111/j.0022-2526.2005.01560.x. |
[12] |
G. A. El, R. H. J. Grimshaw and M. V. Pavlov,
Integrable shallow-water equations and undular bores, Studies Appl. Math., 106 (2001), 157-186.
doi: 10.1111/1467-9590.00163. |
[13] |
C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura,
Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095-1097.
doi: 10.1103/PhysRevLett.19.1095. |
[14] |
V. S. Gerdjikov, E. V. Doktorov and J. Yang, Adiabatic interaction of N ultrashort solitons: Universality of the complex Toda chain model, Phys. Rev. E, 64 (2001), Paper No. 056617, 15 pp.
doi: 10.1103/PhysRevE.64.056617. |
[15] |
J. Haberlin and T. Lyons,
Solitons of shallow-water models from energy-dependent spectral problems, Eur. Phys. J. Plus, 133 (2018), 16.
doi: 10.1140/epjp/i2018-11848-8. |
[16] |
M. A. Helal,
Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos, Solitons and Fractals, 13 (2002), 1917-1929.
doi: 10.1016/S0960-0779(01)00189-8. |
[17] |
R. Ivanov,
Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.
doi: 10.1016/j.wavemoti.2009.06.012. |
[18] |
R. Ivanov and T. Lyons, Integrable models for shallow water with energy dependent spectral problems, J. Nonlinear Math. Phys., 19 (2012), Paper No. 1240008, 17 pp.
doi: 10.1142/S1402925112400086. |
[19] |
M. Jaulent and C. Jean,
The inverse $s$-wave scattering problem for a class of potentials depending on energy, Comm. Math. Phys., 28 (1972), 177-220.
doi: 10.1007/BF01645775. |
[20] |
A. M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations: An Introductory Course, World Scientific Publishing, 2000.
doi: 10.1142/9789812792259. |
[21] |
A. M. Kamchatnov, R. A. Kraenkel and B. A. Umarov,
Asymptotic soliton train solutions of Kaup-Boussinesq equations, Wave Motion, 38 (2003), 355-365.
doi: 10.1016/S0165-2125(03)00062-3. |
[22] |
D. J. Kaup,
A higher-order water-wave equation and the method for solving it, Progr. Theoret. Phys., 54 (1975), 396-408.
doi: 10.1143/PTP.54.396. |
[23] |
V. B. Matveev and M. I. Yavor,
Almost periodic N-soliton solutions of the nonlinear hydrodynamic Kaup equation, Ann. Inst. H. Poincar'e Sect. A, 31 (1979), 25-41.
|
[24] |
K. Nishinary, K. Abe and J. Satsuma,
A new-type of soliton behavior in a two dimensional plasma system, J. Phys. Soc. Japan, 62 (1993), 2021-2029.
doi: 10.1143/JPSJ.62.2021. |
[25] |
M. Pavlov,
Integrable systems and metrics of constant curvature, J. Nonlinear Math. Phys., 9 (2002), 173-191.
doi: 10.2991/jnmp.2002.9.s1.15. |
[26] |
D. H. Sattinger and J. Szmigielski,
A Riemann-Hilbert problem for an energy dependent Schrödinger operator, Inverse Problems, 12 (1996), 1003-1025.
doi: 10.1088/0266-5611/12/6/014. |
[27] |
K. Singla and M. Rana, Exact solutions and conservation laws of multi Kaup-Boussinesq system with fractional order, Analysis Math. Phys., 11 (2021), Paper No. 30, 15 pp.
doi: 10.1007/s13324-020-00467-z. |
[28] |
H. D. Wahlquist and F. B. Estabrook,
Prolongation structures of nonlinear evolution equations, J. Math. Phys., 16 (1975), 1-7.
doi: 10.1063/1.522396. |
[29] |
D.-S. Wang,
Integrability of the coupled KdV equations derived from two-layer fluids: Prolongation structures and Miura transformations, Nonlinear Anal., 73 (2010), 270-281.
doi: 10.1016/j.na.2010.03.021. |
[30] |
D.-S. Wang and J. Liu,
Integrability aspects of some two-component KdV systems, Appl. Math. Lett., 79 (2018), 211-219.
doi: 10.1016/j.aml.2017.12.018. |
[31] |
B. Wang, Z. Zhang and B. Li,
Soliton molecules and some hybrid solutions for the nonlinear Schrödinger equation, Chin. Phys. Lett., 37 (2020), 030501.
doi: 10.1088/0256-307X/37/3/030501. |
[32] |
J. Yang, Nonlinear Waves in Integrable and Non-Integrable Systems, Society for Industrial and Applied Mathematics, 2010.
doi: 10.1137/1.9780898719680. |
[33] |
Y. S. Zhang and J. S. He,
Bound-state soliton solutions of the nonlinear Schrödinger equation and their asymmetric decompositions, Chin. Phys. Lett., 36 (2019), 030201.
doi: 10.1088/0256-307X/36/3/030201. |
[34] |
V. E. Zakharov, On stochastization of one-dimensional chains of nonlinear oscillators, Sov. Phys.-JETP, 38 (1974), 108-110; translated from Zh. Eksp. Teor. Fiz., 65 (1973), 219-225. |
[35] |
J. Zhou, L. Tian and X. Fan,
Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system, Nonlinear Analy.: Real World Appl., 11 (2010), 3229-3235.
doi: 10.1016/j.nonrwa.2009.11.017. |
















Classification of exact solutions on the interval |
|||
Distribution of the roots | The roots | The Exact Solutions | Properties of the solution |
Four different real roots | Periodic solution | ||
Two simple real roots and one double real root | Periodic solution | ||
Anti-bell soliton solution | |||
Constant solution | |||
One simple real root and one triple real root | Algebraic soliton solution | ||
Constant solution | |||
Two double real roots | Constant solution | ||
One quadruple real root | Constant solution |
Classification of exact solutions on the interval |
|||
Distribution of the roots | The roots | The Exact Solutions | Properties of the solution |
Four different real roots | Periodic solution | ||
Two simple real roots and one double real root | Periodic solution | ||
Anti-bell soliton solution | |||
Constant solution | |||
One simple real root and one triple real root | Algebraic soliton solution | ||
Constant solution | |||
Two double real roots | Constant solution | ||
One quadruple real root | Constant solution |
Cases | Parameter selection | Dispersion relation |
A | ||
B | ||
C | ||
D |
Cases | Parameter selection | Dispersion relation |
A | ||
B | ||
C | ||
D |
[1] |
Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401 |
[2] |
Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101 |
[3] |
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 |
[4] |
Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687 |
[5] |
Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022048 |
[6] |
Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455 |
[7] |
Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022001 |
[8] |
Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051 |
[9] |
Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467 |
[10] |
Weiguo Zhang, Yan Zhao, Xiang Li. Qualitative analysis to the traveling wave solutions of Kakutani-Kawahara equation and its approximate damped oscillatory solution. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1075-1090. doi: 10.3934/cpaa.2013.12.1075 |
[11] |
Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415 |
[12] |
Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119 |
[13] |
Hisashi Okamoto, Takashi Sakajo, Marcus Wunsch. Steady-states and traveling-wave solutions of the generalized Constantin--Lax--Majda equation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3155-3170. doi: 10.3934/dcds.2014.34.3155 |
[14] |
Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507 |
[15] |
Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control and Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 |
[16] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[17] |
Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841 |
[18] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[19] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[20] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]