July  2022, 42(7): 3415-3430. doi: 10.3934/dcds.2022020

SRB measures of singular hyperbolic attractors

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

Received  May 2021 Revised  December 2021 Published  July 2022 Early access  March 2022

It is known that hyperbolic maps admitting singularities have at most countably many ergodic Sinai-Ruelle-Bowen (SRB) measures. These maps include the Belykh attractor, the geometric Lorenz attractor, and more general Lorenz-type systems. In this paper, we establish easily verifiable sufficient conditions guaranteeing that the number of ergodic SRB measures is at most finite, and provide examples and nonexamples showing that the conditions are necessary in general.

Citation: Dominic Veconi. SRB measures of singular hyperbolic attractors. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3415-3430. doi: 10.3934/dcds.2022020
References:
[1]

V. Afraimovich and Y. Pesin, The dimension of Lorenz type attractors, Sov. Sci. Rev., Sect. C, Math. Phys. Rev, 6 (1987), 169-241. 

[2]

J. AlvesC. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.  doi: 10.1007/s002220000057.

[3]

V. Araujo, Finitely many physical measures for sectional-hyperbolic attracting sets and statistical stability, Ergod. Theory Dyn. Syst., 41 (2021), 2706-2733.  doi: 10.1017/etds.2020.91.

[4]

V. Araujo and M. Pacifico, Three-Dimensional Flows, A Series of Modern Surveys in Mathematics, 53, Springer-Verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-11414-4.

[5]

V. AraujoM. PacificoE. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.  doi: 10.1090/S0002-9947-08-04595-9.

[6]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, 2007.

[7] V. Belykh, Qualitative Methods of the Theory of Nonlinear Oscillations in Point Systems,, Gorki University Press, 1980. 
[8]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.  doi: 10.1007/BF02810585.

[9]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture notes in Mathematics, 470, Springer-Verlag, Berlin, Heidelberg, 2008.

[10]

H. Hu, Conditions for the existence of SBR measures for "almost Anosov" diffeomorphisms, Trans. Amer. Math. Soc., 352 (2000), 2331-2367.  doi: 10.1090/S0002-9947-99-02477-0.

[11]

J. Kaplan and J. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93-108.  doi: 10.1007/BF01221359.

[12]

R. Lozi, Un attracteur étrange du type attracteur de Hénon, J. Phys., Paris, Coll. C5, 39 (1978), 9–10.

[13]

Y. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties, Ergod. Theory Dyn. Syst., 12 (1992), 123-151.  doi: 10.1017/S0143385700006635.

[14]

Y. PesinS. Senti and K. Zhang, Thermodynamics of the Katok map (Revised Version), Ergod. Theory Dyn. Syst., 41 (2021), 1864-1866.  doi: 10.1017/etds.2020.21.

[15]

F. Rodriguez-HertzM. A. Rodriguez-HertzA. Tahzibi and R. Ures, Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, Commun. Math. Phys., 306 (2011), 35-49.  doi: 10.1007/s00220-011-1275-0.

[16]

E. Sataev, Invariant measures for hyperbolic maps with singularities, Russian Math. Surveys, 47 (1992), 191-251.  doi: 10.1070/RM1992v047n01ABEH000864.

[17]

E. Sataev, Invariant measures for singular hyperbolic attractors, Sbornik: Mathematics, 201 (2010), 419-470.  doi: 10.1070/SM2010v201n03ABEH004078.

[18]

D. Veconi, Thermodynamics of smooth models of pseudo-Anosov homeomorphisms, Ergodic Theory Dynam. Systems, 42 (2022), 1284–1326, arXiv: 1912.09625. doi: 10.1017/etds.2021.43.

show all references

References:
[1]

V. Afraimovich and Y. Pesin, The dimension of Lorenz type attractors, Sov. Sci. Rev., Sect. C, Math. Phys. Rev, 6 (1987), 169-241. 

[2]

J. AlvesC. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.  doi: 10.1007/s002220000057.

[3]

V. Araujo, Finitely many physical measures for sectional-hyperbolic attracting sets and statistical stability, Ergod. Theory Dyn. Syst., 41 (2021), 2706-2733.  doi: 10.1017/etds.2020.91.

[4]

V. Araujo and M. Pacifico, Three-Dimensional Flows, A Series of Modern Surveys in Mathematics, 53, Springer-Verlag, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-11414-4.

[5]

V. AraujoM. PacificoE. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.  doi: 10.1090/S0002-9947-08-04595-9.

[6]

L. Barreira and Y. Pesin, Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, 2007.

[7] V. Belykh, Qualitative Methods of the Theory of Nonlinear Oscillations in Point Systems,, Gorki University Press, 1980. 
[8]

C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math., 115 (2000), 157-193.  doi: 10.1007/BF02810585.

[9]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture notes in Mathematics, 470, Springer-Verlag, Berlin, Heidelberg, 2008.

[10]

H. Hu, Conditions for the existence of SBR measures for "almost Anosov" diffeomorphisms, Trans. Amer. Math. Soc., 352 (2000), 2331-2367.  doi: 10.1090/S0002-9947-99-02477-0.

[11]

J. Kaplan and J. Yorke, Preturbulence: A regime observed in a fluid flow model of Lorenz, Commun. Math. Phys., 67 (1979), 93-108.  doi: 10.1007/BF01221359.

[12]

R. Lozi, Un attracteur étrange du type attracteur de Hénon, J. Phys., Paris, Coll. C5, 39 (1978), 9–10.

[13]

Y. Pesin, Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties, Ergod. Theory Dyn. Syst., 12 (1992), 123-151.  doi: 10.1017/S0143385700006635.

[14]

Y. PesinS. Senti and K. Zhang, Thermodynamics of the Katok map (Revised Version), Ergod. Theory Dyn. Syst., 41 (2021), 1864-1866.  doi: 10.1017/etds.2020.21.

[15]

F. Rodriguez-HertzM. A. Rodriguez-HertzA. Tahzibi and R. Ures, Uniqueness of SRB measures for transitive diffeomorphisms on surfaces, Commun. Math. Phys., 306 (2011), 35-49.  doi: 10.1007/s00220-011-1275-0.

[16]

E. Sataev, Invariant measures for hyperbolic maps with singularities, Russian Math. Surveys, 47 (1992), 191-251.  doi: 10.1070/RM1992v047n01ABEH000864.

[17]

E. Sataev, Invariant measures for singular hyperbolic attractors, Sbornik: Mathematics, 201 (2010), 419-470.  doi: 10.1070/SM2010v201n03ABEH004078.

[18]

D. Veconi, Thermodynamics of smooth models of pseudo-Anosov homeomorphisms, Ergodic Theory Dynam. Systems, 42 (2022), 1284–1326, arXiv: 1912.09625. doi: 10.1017/etds.2021.43.

[1]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[2]

Peidong Liu, Kening Lu. A note on partially hyperbolic attractors: Entropy conjecture and SRB measures. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 341-352. doi: 10.3934/dcds.2015.35.341

[3]

Zeng Lian, Peidong Liu, Kening Lu. Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3905-3920. doi: 10.3934/dcds.2017164

[4]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

[5]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[6]

Anatole Katok. Hyperbolic measures and commuting maps in low dimension. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 397-411. doi: 10.3934/dcds.1996.2.397

[7]

David Parmenter, Mark Pollicott. Gibbs measures for hyperbolic attractors defined by densities. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3953-3977. doi: 10.3934/dcds.2022038

[8]

Miaohua Jiang. Derivative formula of the potential function for generalized SRB measures of hyperbolic systems of codimension one. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 967-983. doi: 10.3934/dcds.2015.35.967

[9]

Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505

[10]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[11]

Marzie Zaj, Abbas Fakhari, Fatemeh Helen Ghane, Azam Ehsani. Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1777-1807. doi: 10.3934/dcds.2018073

[12]

Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517

[13]

Evelyn Sander. Hyperbolic sets for noninvertible maps and relations. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 339-357. doi: 10.3934/dcds.1999.5.339

[14]

Zhicong Liu. SRB attractors with intermingled basins for non-hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1545-1562. doi: 10.3934/dcds.2013.33.1545

[15]

Huyi Hu, Miaohua Jiang, Yunping Jiang. Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 215-234. doi: 10.3934/dcds.2008.22.215

[16]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[17]

Xu Zhang. Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2873-2886. doi: 10.3934/dcds.2016.36.2873

[18]

Michihiro Hirayama, Naoya Sumi. Hyperbolic measures with transverse intersections of stable and unstable manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1451-1476. doi: 10.3934/dcds.2013.33.1451

[19]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[20]

Vaughn Climenhaga, Yakov Pesin, Agnieszka Zelerowicz. Equilibrium measures for some partially hyperbolic systems. Journal of Modern Dynamics, 2020, 16: 155-205. doi: 10.3934/jmd.2020006

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (172)
  • HTML views (105)
  • Cited by (0)

Other articles
by authors

[Back to Top]