We show that Whitham type equations $u_t + u u_x -\mathcal{L} u_x = 0$, where $L$ is a general Fourier multiplier operator of order $\alpha \in [-1, 1]$, $\alpha\neq 0$, allow for small solutions to be extended beyond their ordinary existence time. The result is valid for a range of quadratic dispersive equations with inhomogenous symbols in the dispersive regime given by the parameter $\alpha$.
Citation: |
[1] |
L. Abdelouhab, J. L. Bona, M. Felland and J.-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D, 40 (1989), 360-392.
doi: 10.1016/0167-2789(89)90050-X.![]() ![]() |
[2] |
T. Alazard and J.-M. Delort, Sobolev Estimates for Two Dimensional Gravity Water Waves, Astérisque, 2015.
![]() ![]() |
[3] |
M. N. Arnesen, Existence of solitary-wave solutions to nonlocal equations, Discrete Contin. Dyn. Syst., 36 (2016), 3483-3510.
doi: 10.3934/dcds.2016.36.3483.![]() ![]() ![]() |
[4] |
M. Berti and J.-M. Delort, Almost Global Solutions of Capillary-Gravity Water Waves Equations on the Circle, Lecture Notes of the Unione Matematica Italiana, 24. Springer, Cham; Unione Matematica Italiana, [Bologna], 2018.
doi: 10.1007/978-3-319-99486-4.![]() ![]() ![]() |
[5] |
M. Berti, R. Feola and L. Franzoi, Quadratic life span of periodic gravity-capillary water waves, Water Waves, 3 (2021), 85-115.
doi: 10.1007/s42286-020-00036-8.![]() ![]() ![]() |
[6] |
G. Bruell and R. Dhara, Waves of maximal height for a class of nonlocal equations with homogeneous symbols, Indiana Univ. Math. J., 70 (2021), 711-742.
doi: 10.1512/iumj.2021.70.8368.![]() ![]() ![]() |
[7] |
J.-M. Delort and J. Szeftel, Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., (2004), 1897–1966.
doi: 10.1155/S1073792804133321.![]() ![]() ![]() |
[8] |
V. Duchêne, D. Nilsson and E. Wahlén, Solitary wave solutions to a class of modified Green-Naghdi systems, J. Math. Fluid Mech., 20 (2018), 1059-1091.
doi: 10.1007/s00021-017-0355-0.![]() ![]() ![]() |
[9] |
M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type, Nonlinearity, 25 (2012), 1-34.
doi: 10.1088/0951-7715/25/10/2903.![]() ![]() |
[10] |
M. Ehrnström, M. A. Johnson, O. I. H. Maehlen and F. Remonato, On the bifurcation diagram of the capillary-gravity Whitham equation, Water Waves, 1 (2019), 275-313.
doi: 10.1007/s42286-019-00019-4.![]() ![]() |
[11] |
M. Ehrnström and E. Wahlén, On Whitham's conjecture of a highest cusped wave for a nonlocal dispersive equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1603-1637.
doi: 10.1016/j.anihpc.2019.02.006.![]() ![]() ![]() |
[12] |
M. Ehrnström and Y. Wang, Enhanced existence time of solutions to the fractional Korteweg–de Vries equation, SIAM J. Math. Anal., 51 (2019), 3298-3323.
doi: 10.1137/19M1237867.![]() ![]() ![]() |
[13] |
R. Feola, B. Grébert and F. Iandoli, Long time solutions for quasi-linear hamiltonian perturbations of schrödinger and klein-gordon equations on tori, preprint, arXiv: 2009.07553.
![]() |
[14] |
P. Germain, N. Masmoudi and J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. of Math., 175 (2012), 691-754.
doi: 10.4007/annals.2012.175.2.6.![]() ![]() ![]() |
[15] |
F. Hildrum, Solitary waves in dispersive evolution equations of Whitham type with nonlinearities of mild regularity, Nonlinearity, 33 (2020), 1594-1624.
doi: 10.1088/1361-6544/ab60d5.![]() ![]() ![]() |
[16] |
J. K. Hunter and M. Ifrim, Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., 44 (2012), 2039-2052.
doi: 10.1137/110849791.![]() ![]() ![]() |
[17] |
J. K. Hunter, M. Ifrim and D. Tataru, Two dimensional water waves in holomorphic coordinates, Comm. Math. Phys., 346 (2016), 483-552.
doi: 10.1007/s00220-016-2708-6.![]() ![]() ![]() |
[18] |
J. K. Hunter, M. Ifrim, D. Tataru and T. K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.
doi: 10.1090/proc/12215.![]() ![]() ![]() |
[19] |
V. M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317 (2017), 410-437.
doi: 10.1016/j.aim.2017.07.006.![]() ![]() ![]() |
[20] |
M. Ifrim and D. Tataru, The lifespan of small data solutions in two dimensional capillary water waves, Arch. Ration. Mech. Anal., 225 (2017), 1279-1346.
doi: 10.1007/s00205-017-1126-z.![]() ![]() ![]() |
[21] |
A. D. Ionescu and F. Pusateri, Global solutions for the gravity water waves system in 2d, Invent. Math., 199 (2015), 653-804.
doi: 10.1007/s00222-014-0521-4.![]() ![]() ![]() |
[22] |
A. D. Ionescu and F. Pusateri, Global Regularity for 2D Water Waves with Surface Tension, Mem. Amer. Math. Soc. 256, 2018
doi: 10.1090/memo/1227.![]() ![]() ![]() |
[23] |
A. D. Ionescu and F. Pusateri, Long-time existence for multi-dimensional periodic water waves, Geom. Funct. Anal., 29 (2019), 811-870.
doi: 10.1007/s00039-019-00490-8.![]() ![]() ![]() |
[24] |
C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation, Phys. D, 295/296 (2015), 46-65.
doi: 10.1016/j.physd.2014.12.004.![]() ![]() ![]() |
[25] |
D. Lannes, The Water Waves Problem, Mathematical Surveys and Monographs, 188. American Mathematical Society, Providence, RI, 2013.
doi: 10.1090/surv/188.![]() ![]() ![]() |
[26] |
F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, SIAM J. Math. Anal., 46 (2014), 1505-1537.
doi: 10.1137/130912001.![]() ![]() ![]() |
[27] |
O. I. H. Maehlen, Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities, Discrete Contin. Dyn. Syst., 40 (2020), 4113-4130.
doi: 10.3934/dcds.2020174.![]() ![]() ![]() |
[28] |
L. Molinet, D. Pilod and S. Vento, On well-posedness for some dispersive perturbations of Burgers' equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1719-1756.
doi: 10.1016/j.anihpc.2017.12.004.![]() ![]() ![]() |
[29] |
L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307.![]() ![]() ![]() |
[30] |
D. Nilsson, Extended lifespan of the fractional BBM equation, Asymptotic Analysis, (2021), 1–21.
![]() |
[31] |
J.-C. Saut, Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979), 21-61.
![]() ![]() |
[32] |
J.-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, arXiv: 2006.03803, to appear in SIAM. J. Math. Anal.
![]() |
[33] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.
doi: 10.1002/cpa.3160380516.![]() ![]() ![]() |
[34] |
A. Stefanov and J. D. Wright, Small amplitude traveling waves in the full-dispersion Whitham equation, J. Dynam. Differential Equations, 32 (2020), 85-99.
doi: 10.1007/s10884-018-9713-8.![]() ![]() ![]() |
[35] |
S. Wu, Almost global wellposedness of the 2-D full water wave problem, Invent. Math., 177 (2009), 45-135.
doi: 10.1007/s00222-009-0176-8.![]() ![]() ![]() |
The symmetries of the function