doi: 10.3934/dcds.2022040
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Radon measure-valued solutions of unsteady filtration equations

1. 

Dipartimento di Pianificazione, Design, Tecnologie dell'Architettura, Università Sapienza di Roma, via Flaminia 70, 00196 Roma, Italy

2. 

Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy

3. 

Dipartimento di Matematica "G. Castelnuovo", Università Sapienza di Roma, P.le A. Moro 5, I-00185 Roma

4. 

Istituto per le Applicazioni del Calcolo "M. Picone", CNR, Roma, Italy

*Corresponding author: Alberto Tesei

Received  November 2021 Revised  February 2022 Early access April 2022

We study Radon measure-valued solutions of a Cauchy-Dirichlet problem in one space dimension that describes nonlinear convection-diffusion phenomena in heterogeneous media. Well-posedness results are proven, which extend those previously known for the space homogeneous case.

Citation: Maria Michaela Porzio, Flavia Smarrazzo, Alberto Tesei. Radon measure-valued solutions of unsteady filtration equations. Discrete and Continuous Dynamical Systems, doi: 10.3934/dcds.2022040
References:
[1]

M. Bertsch and R. Dal Passo, A parabolic equation with a mean-curvature type operator, In Nonlinear Diffusion Equations and Their Equilibrium States, 3, (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 7 (1992), 89–97.

[2]

M. BertschR. Dal Passo and B. Franchi, A degenerate parabolic problem in noncylindrical domains, Math. Ann., 294 (1992), 551-578.  doi: 10.1007/BF01934341.

[3]

H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), 73-97. 

[4]

C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3$^{rd}$ edition, Springer, 2004.

[5]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[6]

W.-M. Ni, The Mathematics of Diffusion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.

[7]

O. A. Oleinik, On equations of the unsteady filtration type, Dokl. Akad. Nauk SSSR, 113 (1957), 1210-1213. 

[8]

M. Pierre, Nonlinear fast diffusion with measures as data, In Nonlinear Parabolic Equations: Qualitative Properties of Solutions, (Rome, 1985), Pitman Res. Notes Math. Ser. 149 (1987), 179–188.

[9]

M. Pierre, Uniqueness of the solutions of $\partial_t u - \Delta \zeta(u) = 0$ with initial datum a measure, Nonlin. Anal., 6 (1982), 175-187.  doi: 10.1016/0362-546X(82)90086-4.

[10]

M. M. PorzioF. Smarrazzo and A. Tesei, Radon measure-valued solutions for a class of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 210 (2013), 713-772.  doi: 10.1007/s00205-013-0666-0.

[11]

M. M. PorzioSm arrazzo and A. Tesei, Radon measure-valued solutions of nonlinear strongly degenerate parabolic equations, Calc. Var. Partial Differential Equations, 51 (2014), 401-437.  doi: 10.1007/s00526-013-0680-y.

[12]

M. M. PorzioF. Smarrazzo and A. Tesei, Noncoercive diffusion equations with Radon measures as initial data, J. London Math. Soc., (2022).  doi: 10.1112/jlms.12548.

[13]

M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc., 51 (1984), 224 pp. doi: 10.1090/memo/0307.

[14]

M. Valadier, A course on Young measures, Rend. Ist. Mat. Univ. Trieste, 26 (1994), 349-394. 

[15] J. L. Vázquez, Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. 
[16]

J. L. Vazquez, Measure-valued solutions and phenomenon of blow-down in logarithmic diffusion, J. Math. Anal. Appl., 352 (2009), 515-547.  doi: 10.1016/j.jmaa.2008.06.032.

show all references

References:
[1]

M. Bertsch and R. Dal Passo, A parabolic equation with a mean-curvature type operator, In Nonlinear Diffusion Equations and Their Equilibrium States, 3, (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, 7 (1992), 89–97.

[2]

M. BertschR. Dal Passo and B. Franchi, A degenerate parabolic problem in noncylindrical domains, Math. Ann., 294 (1992), 551-578.  doi: 10.1007/BF01934341.

[3]

H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), 73-97. 

[4]

C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, 3$^{rd}$ edition, Springer, 2004.

[5]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[6]

W.-M. Ni, The Mathematics of Diffusion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.

[7]

O. A. Oleinik, On equations of the unsteady filtration type, Dokl. Akad. Nauk SSSR, 113 (1957), 1210-1213. 

[8]

M. Pierre, Nonlinear fast diffusion with measures as data, In Nonlinear Parabolic Equations: Qualitative Properties of Solutions, (Rome, 1985), Pitman Res. Notes Math. Ser. 149 (1987), 179–188.

[9]

M. Pierre, Uniqueness of the solutions of $\partial_t u - \Delta \zeta(u) = 0$ with initial datum a measure, Nonlin. Anal., 6 (1982), 175-187.  doi: 10.1016/0362-546X(82)90086-4.

[10]

M. M. PorzioF. Smarrazzo and A. Tesei, Radon measure-valued solutions for a class of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 210 (2013), 713-772.  doi: 10.1007/s00205-013-0666-0.

[11]

M. M. PorzioSm arrazzo and A. Tesei, Radon measure-valued solutions of nonlinear strongly degenerate parabolic equations, Calc. Var. Partial Differential Equations, 51 (2014), 401-437.  doi: 10.1007/s00526-013-0680-y.

[12]

M. M. PorzioF. Smarrazzo and A. Tesei, Noncoercive diffusion equations with Radon measures as initial data, J. London Math. Soc., (2022).  doi: 10.1112/jlms.12548.

[13]

M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc., 51 (1984), 224 pp. doi: 10.1090/memo/0307.

[14]

M. Valadier, A course on Young measures, Rend. Ist. Mat. Univ. Trieste, 26 (1994), 349-394. 

[15] J. L. Vázquez, Porous Medium Equation. Mathematical Theory, Oxford University Press, Oxford, 2007. 
[16]

J. L. Vazquez, Measure-valued solutions and phenomenon of blow-down in logarithmic diffusion, J. Math. Anal. Appl., 352 (2009), 515-547.  doi: 10.1016/j.jmaa.2008.06.032.

[1]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[2]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[3]

Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6175-6206. doi: 10.3934/dcds.2019269

[4]

Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233

[5]

Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$-well-posedness for a system of constrained set-valued variational inequalities. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 567-581. doi: 10.3934/naco.2013.3.567

[6]

Agnieszka Ulikowska. An age-structured two-sex model in the space of radon measures: Well posedness. Kinetic and Related Models, 2012, 5 (4) : 873-900. doi: 10.3934/krm.2012.5.873

[7]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[8]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[9]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[10]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[11]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[12]

Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112

[13]

Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021307

[14]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[15]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[16]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[17]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[18]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[19]

Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819

[20]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

2021 Impact Factor: 1.588

Article outline

[Back to Top]