\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Local behavior of solutions to a fractional equation with isolated singularity and critical Serrin exponent

  • *Corresponding author: Ke Wu

    *Corresponding author: Ke Wu

The research of J. Wei is partially supported by NSERC of Canada

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the local behavior of positive singular solutions to the equation

    $ \begin{equation*} (-\Delta)^{\sigma}u = u^{\frac{n}{n-2\sigma}}\quad \;{\rm{in }}\;B_{1}\backslash\{0\} \end{equation*} $

    where $ (-\Delta)^{\sigma} $ is the fractional Laplacian operator, $ 0<\sigma<1 $ and $ \frac{n}{n-2\sigma} $ is the critical Serrin exponent. We show that either $ u $ can be extended as a continuous function near the origin or there exist two positive constants $ c_{1} $ and $ c_{2} $ such that

    $ \begin{equation*} c_{1}|x|^{2\sigma-n}(-\ln{|x|})^{-\frac{n-2\sigma}{2\sigma}}\leq u(x)\leq c_{2}|x|^{2\sigma-n}(-\ln{|x|})^{-\frac{n-2\sigma}{2\sigma}}\quad\;{\rm{in }}\; B_{1}\backslash\{0\}. \end{equation*} $

    Mathematics Subject Classification: Primary: 35J60, 35J61; Secondary: 35A21.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] P. Aviles, On isolated singularities in some nonlinear partial differential equations, Indiana Univ. Math. J., 32 (1983), 773-791.  doi: 10.1512/iumj.1983.32.32051.
    [2] P. Aviles, Local behavior of solutions of some elliptic equations, Comm. Math. Phys., 108 (1987), 177-192.  doi: 10.1007/BF01210610.
    [3] W. AoH. ChanA. DelaTorreM. A. FontelosM. del Mar González and J. Wei, On higher dimensional singularities for the fractional Yamabe problem: A non-local Mazzeo-Pacard program, Duke Math. J., 168 (2019), 3297-3411.  doi: 10.1215/00127094-2019-0034.
    [4] W. Ao, H. Chan, A. DelaTorre, M. A. Fontelos, M. del Mar González and J. Wei, Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular sets, Calc. Var. Partial Differential Equations, 57 (2018), Paper No. 149, 25 pp.
    [5] W. Ao, H. Chan, M. del Mar González, A. Hyder and J. Wei, Removability of singularities and superharmonicity for some fractional Laplacian equations, preprint, 2020, arXiv: 2001.11683v2.
    [6] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.  doi: 10.1007/BF01243922.
    [7] L. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.
    [8] L. CaffarelliT. JinY. Sire and J. Xiong, Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., 213 (2014), 245-268.  doi: 10.1007/s00205-014-0722-4.
    [9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [10] H. Chan and A. DelaTorre, An analytic construction of singular solutions related to a critical Yamabe problem, Comm. Partial Differential Equations, 45 (2020), 1621-1646.  doi: 10.1080/03605302.2020.1784209.
    [11] H. Chan and A. DelaTorre, Singular solutions of a critical fractional Yamabe problem, Work in progress.
    [12] C.-C. Chen and C. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.  doi: 10.1007/BF02921937.
    [13] H. Chen and A. Quaas, Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results, J. Lond. Math. Soc., 97 (2018), 196-221.  doi: 10.1112/jlms.12104.
    [14] A. DelaTorreM. del PinoM. González and J. Wei, Delaunay-type singular solutions for the fractional Yamabe problem, Math. Ann., 369 (2017), 597-626.  doi: 10.1007/s00208-016-1483-1.
    [15] M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.  doi: 10.1080/03605302.2013.825918.
    [16] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.
    [17] T. JinY. Li and J. Xiong, On a fractional Nirenberg problem, part Ⅰ: Blow up analysis and compactness of solutions, J. Eur. Math. Soc., 16 (2014), 1111-1171.  doi: 10.4171/JEMS/456.
    [18] Y. Li and J. Bao, Local behavior of solutions to fractional Hardy-H$\acute{e}$non equations with isolated singularity, Ann. Mat. Pura Appl., 198 (2019), 41-59.  doi: 10.1007/s10231-018-0761-9.
    [19] R. Mazzeo and F. Pacard, A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis, J. Differential Geom., 44 (1996), 331-370. 
    [20] F. Pacard, Existence and convergence of positive weak solutions of $-\Delta u = u^{\frac{n}{n-2}}$ in bounded domains of $\mathbb{R}^{n}, n\geq3$., Calc. Var. Partial Differential Equations, 1 (1993), 243-265.  doi: 10.1007/BF01191296.
    [21] N. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, 1968.
    [22] H. Yang and W. Zou, Exact asymptotic behavior of singular positive solutions of fractional semi-linear elliptic equations, Proc. Amer. Math. Soc., 147 (2019), 2999-3009.  doi: 10.1090/proc/14448.
    [23] H. Yang and W. Zou, On isolated singularities of fractional semi-linear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 403-420.  doi: 10.1016/j.anihpc.2020.07.003.
  • 加载中
SHARE

Article Metrics

HTML views(1298) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return