Poincaré's last geometric theorem (Poincaré-Birkhoff Theorem [
Citation: |
[1] |
R. B. Barrar, Proof of the fixed point theorems of Poincaré and Birkhoff, Canadian J. Math., 19 (1967), 333-343.
doi: 10.4153/CJM-1967-024-5.![]() ![]() ![]() |
[2] |
G. D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc., 14 (1913), 14-22.
doi: 10.2307/1988766.![]() ![]() ![]() |
[3] |
G. D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math., 47 (1926), 297-311.
doi: 10.1007/BF02559515.![]() ![]() ![]() |
[4] |
M. Brown, A new proof of Brouwer's lemma on translation arcs, Houston J. Math., 10 (1984), 35-41.
![]() ![]() |
[5] |
P. H. Carter, An improvement of the Poincaré-Birkhoff fixed point theorem, Trans. Amer. Math. Soc., 269 (1982), 285-299.
doi: 10.2307/1998604.![]() ![]() ![]() |
[6] |
F. Chen and D. Qian, An extension of the Poincaré-Birkhoff theorem for Hamiltonian systems coupling resonant linear components with twisting components, J. Differential Equations, 321 (2022), 415-448.
doi: 10.1016/j.jde.2022.03.016.![]() ![]() ![]() |
[7] |
S.-N. Chow and M. L. Pei, Aubry-Mather theorem and quasiperiodic orbits for time dependent reversible systems, Nonlinear Anal., 25 (1995), 905-931.
doi: 10.1016/0362-546X(95)00087-C.![]() ![]() ![]() |
[8] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I., 1978.
![]() ![]() |
[9] |
R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3.![]() ![]() ![]() |
[10] |
A. Fonda and A. J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 679-698.
doi: 10.1016/j.anihpc.2016.04.002.![]() ![]() ![]() |
[11] |
J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151.
doi: 10.2307/1971464.![]() ![]() ![]() |
[12] |
J. Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math., 108 (1992), 403-418.
doi: 10.1007/BF02100612.![]() ![]() ![]() |
[13] |
J. Franks, Notes on Chain Recurrence and Lyapunonv Functions, (2017), 1–8, http://arXiv.org/abs/1704.07264.
![]() |
[14] |
J. Kang, On reversible maps and symmetric periodic points, Ergodic Theory Dynam. Systems, 38 (2018), 1479-1498.
doi: 10.1017/etds.2016.71.![]() ![]() ![]() |
[15] |
P. Le Calvez and J. Wang, Some remarks on the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 138 (2010), 703-715.
doi: 10.1090/S0002-9939-09-10105-3.![]() ![]() ![]() |
[16] |
M. B. Sevryuk, Reversible Systems, Lecture Notes in Mathematics, 1211. Springer-Verlag, Berlin, 1986.
doi: 10.1007/BFb0075877.![]() ![]() ![]() |
[17] |
C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, New York-Heidelberg, 1971.
![]() ![]() |
[18] |
E. E. Slaminka, Removing index $0$ fixed points for area preserving maps of two-manifolds, Trans. Amer. Math. Soc., 340 (1993), 429-445.
doi: 10.1090/S0002-9947-1993-1145963-5.![]() ![]() ![]() |
Carter's example