In this paper, we are concerned with the following elliptic equation
where
$ \begin{array}{c} ''it\; is\; interesting\; to\; know\; the \;existence\; of\; single-peak \;solutions \; for \;small \;\varepsilon\;\\ and \;s = 1''.\end{array} $
Also it was addressed in Remark 1.8 of their paper that
$ \begin{array}{c} ''the\; question\; of \;solutions \;concentrated \;at \;several\; points \;at \;the \;same \;time \;is \\ still \;open''. \end{array}$
Here we give some confirmative answers to the above two questions. Furthermore, we prove the local uniqueness of the multi-peak solutions. And our results show that the concentration of the solutions to above problem is delicate whether
Correction: “Technology Foundation of Guizhou Province” is corrected to “The Science and Technology Foundation of Guizhou Province" under Fund Project.
Citation: |
[1] |
T. Bartsch, A. Micheletti and A. Pistoia, The Morse property for functions of Kirchhoff-Routh path type, Discrete Contin. Dyn. Syst. Series. S, 12 (2019), 1867-1877.
doi: 10.3934/dcdss.2019123.![]() ![]() ![]() |
[2] |
H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437-478.
doi: 10.1002/cpa.3160360405.![]() ![]() ![]() |
[3] |
D. Cao, S. Li and P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 54 (2015), 4037-4063.
doi: 10.1007/s00526-015-0930-2.![]() ![]() ![]() |
[4] |
D. Cao and E. Noussair, Multiple positive and nodal solutions for semilinear elliptic problems with critical exponents, Indiana Univ. Math. J., 44 (1995), 1249-1271.
doi: 10.1512/iumj.1995.44.2027.![]() ![]() ![]() |
[5] |
D. Cao, S. Peng and S. Yan, Singularly Perturbed Methods for Nonlinear Elliptic Problems, Cambridge University Press, 2021.
doi: 10.1017/9781108872638.![]() ![]() |
[6] |
D. Cao and X. Zhong, Multiplicity of positive solutions for semilinear elliptic equations involving the critical Sobolev exponents, Nonlin. Anal. TMA, 29 (1997), 461-483.
doi: 10.1016/S0362-546X(96)00051-X.![]() ![]() ![]() |
[7] |
J. Chabrowski and S. Yan, Concentration of solutions for a nonlinear elliptic problem with near critical exponent, Topol. Methods Nonlinear Anal., 13 (1999), 199-233.
doi: 10.12775/TMNA.1999.011.![]() ![]() ![]() |
[8] |
Y. Deng, C. Lin and S. Yan, On the prescribed scalar curvature problem in $ \mathbb R^N$, local uniqueness and periodicity, J. Math. Pures Appl., 104 (2015), 1013-1044.
doi: 10.1016/j.matpur.2015.07.003.![]() ![]() ![]() |
[9] |
J. Escobar, Positive solutions for some semilinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math., 40 (1987), 623-657.
doi: 10.1002/cpa.3160400507.![]() ![]() ![]() |
[10] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[11] |
L. Glangetas, Uniqueness of positive solutions of a nonlinear elliptic equation involving the critical exponent, Nonlin. Anal. TMA, 20 (1993), 571-603.
doi: 10.1016/0362-546X(93)90039-U.![]() ![]() ![]() |
[12] |
Y. Guo, M. Musso, S. Peng and S. Yan, Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications, J. Funct. Anal., 279 (2020), 108553, 29 pp.
doi: 10.1016/j.jfa.2020.108553.![]() ![]() ![]() |
[13] |
Z. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159-174.
doi: 10.1016/s0294-1449(16)30270-0.![]() ![]() ![]() |
[14] |
W. Kulpa, The Poincaré-Miranda theorem, Am. Math. Mon., 104 (1997), 545-550.
doi: 10.2307/2975081.![]() ![]() ![]() |
[15] |
C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940), 5-7.
![]() ![]() |
[16] |
M. Musso and A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J., 51 (2002), 541-579.
doi: 10.1512/iumj.2002.51.2199.![]() ![]() ![]() |
[17] |
S. Peng, C. Wang and S. Yan, Construction of solutions via local Pohozaev identities, J. Funct. Anal., 274 (2018), 2606-2633.
doi: 10.1016/j.jfa.2017.12.008.![]() ![]() ![]() |
[18] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3.![]() ![]() ![]() |
[19] |
S. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda u=0$, Dokl. Akad. Nauk, 165 (1965), 36-39.
![]() ![]() |
[20] |
J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on $S^N$, J. Funct. Anal., 258 (2010), 3048-3081.
doi: 10.1016/j.jfa.2009.12.008.![]() ![]() ![]() |