doi: 10.3934/dcds.2022048
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators

1. 

Institute for Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

2. 

Department of Mathematics, University of Milan, Via Saldini 50, 20133, Milano, Italy

*Corresponding author: Thomas Kappeler

Received  November 2021 Early access April 2022

Fund Project: TK supported in part by the Swiss National Science Foundation, RM supported in part by the Swiss National Science Foundation and INDAM-GNFM and by the ERC starting grant 2021 'Hamiltonian Dynamics Normal Forms and Water Waves' (HamDyWWa), project number 101039762

Near an arbitrary finite gap potential we construct real analytic, canonical coordinates for the Benjamin-Ono equation on the torus having the following two main properties: (1) up to a remainder term, which is smoothing to any given order, the coordinate transformation is a pseudo-differential operator of order 0 with principal part given by a modified Fourier transform (modification by a phase factor) and (2) the pullback of the Hamiltonian of the Benjamin-Ono is in normal form up to order three and the corresponding Hamiltonian vector field admits an expansion in terms of para-differential operators. Such coordinates are a key ingredient for studying the stability of finite gap solutions of the Benjamin-Ono equation under small, quasi-linear perturbations.

Citation: Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators. Discrete and Continuous Dynamical Systems, doi: 10.3934/dcds.2022048
References:
[1]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.  doi: 10.1017/S002211206700103X.

[2]

R. E. Davis and A. Acrivos, Solitary internal waves in deep water, J. Fluid Mech., 29 (1967), 593-607.  doi: 10.1017/S0022112067001041.

[3]

P. Gérard and T. Kappeler, On the integrability of the Benjamin-Ono equation on the torus, Comm. Pure Appl. Math., 74 (2021), 1685-1747.  doi: 10.1002/cpa.21896.

[4]

P. Gérard, T. Kappeler and P. Topalov, On the analytic Birkhoff normal form of the Benjamin-Ono equation and applications, Nonlinear Anal., 216 (2022), 32pp. doi: 10.1016/j.na.2021.112687.

[5]

P. Gérard, T. Kappeler and P. Topalov, On the analyticity of the nonlinear Fourier transform of the Benjamin-Ono equation on $\mathbb T$, preprint, 2021, arXiv: 2109.08988.

[6]

P. GérardT. Kappeler and P. Topalov, On the Benjamin–Ono equation on $\mathbb T$ and its periodic and quasiperiodic solutions, J. Spectr. Theory, 12 (2022), 169-193. 

[7]

P. Gérard, T. Kappeler and P. Topalov, Sharp well-posedness results for the Benjamin-Ono equation in $H^{s}(\mathbb T, \mathbb R)$ and qualitative properties of its solution, to appear in Acta Math., arXiv: 2004.04857.

[8]

P. Gérard, T. Kappeler and P. Topalov, On smoothing properties and Tao's gauge transform of the Benjamin-Ono equation on the torus, preprint, 2021, arXiv: 2109.00610.

[9]

P. Gérard, T. Kappeler and P. Topalov, On the spectrum of the Lax operator of the Benjamin-Ono equation on the torus, J. Funct. Anal., 279 (2020), 75pp. doi: 10.1016/j.jfa.2020.108762.

[10]

B. Grébert and T. Kappeler, The Defocusing NLS Equation and Its Normal Form, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2014. doi: 10.4171/131.

[11]

T. Kappeler and R. Montalto, Canonical coordinates with tame estimates for the defocusing NLS equation on the circle, Int. Math. Res. Not. IMNR, 2018 (2018), 1473-1531.  doi: 10.1093/imrn/rnw233.

[12]

T. Kappeler and R. Montalto, Normal form coordinates for the KdV equation having expansions in terms of pseudodifferential operators, Comm. Math. Phys., 375 (2020), 833-913.  doi: 10.1007/s00220-019-03498-1.

[13]

T. Kappeler and R. Montalto, On the stability of periodic multi-solitons of the KdV equation, Comm. Math. Phys., 385 (2021), 1871-1956.  doi: 10.1007/s00220-021-04089-9.

[14]

T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, A Series of Modern Surveys in Mathematics, 45, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-08054-2.

[15]

T. KappelerB. Schaad and P. Topalov, Qualitative features of periodic solutions of KdV, Comm. Partial Differential Equations, 38 (2013), 1626-1673.  doi: 10.1080/03605302.2013.814141.

[16]

T. KappelerB. Schaad and P. Topalov, Semi-linearity of the non-linear Fourier transform of the defocusing NLS equation, Int. Math. Res. Not. IMRN, 2016 (2016), 7212-7229.  doi: 10.1093/imrn/rnv397.

[17]

I. Krichever, Perturbation theory in periodic problems for two-dimensional integrable systems, Soviet Scientific Reviews C. Math. Phys., 9 (1991), 1-103. 

[18]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000

[19]

S. Kuksin and G. Perelman, Vey theorem in infinite dimensions and its application to KdV, Discrete Contin. Dyn. Syst., 27 (2010), 1-24.  doi: 10.3934/dcds.2010.27.1.

[20]

G. Métivier, Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, 5, Edizioni della Normale, Pisa, 2008.

[21]

J.-C. Saut, Benjamin-Ono and intermediate long wave equations: Modeling, IST, and PDE, in Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Fields Inst. Commun., 83, Springer, New York, 2019, 95–160.

show all references

References:
[1]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.  doi: 10.1017/S002211206700103X.

[2]

R. E. Davis and A. Acrivos, Solitary internal waves in deep water, J. Fluid Mech., 29 (1967), 593-607.  doi: 10.1017/S0022112067001041.

[3]

P. Gérard and T. Kappeler, On the integrability of the Benjamin-Ono equation on the torus, Comm. Pure Appl. Math., 74 (2021), 1685-1747.  doi: 10.1002/cpa.21896.

[4]

P. Gérard, T. Kappeler and P. Topalov, On the analytic Birkhoff normal form of the Benjamin-Ono equation and applications, Nonlinear Anal., 216 (2022), 32pp. doi: 10.1016/j.na.2021.112687.

[5]

P. Gérard, T. Kappeler and P. Topalov, On the analyticity of the nonlinear Fourier transform of the Benjamin-Ono equation on $\mathbb T$, preprint, 2021, arXiv: 2109.08988.

[6]

P. GérardT. Kappeler and P. Topalov, On the Benjamin–Ono equation on $\mathbb T$ and its periodic and quasiperiodic solutions, J. Spectr. Theory, 12 (2022), 169-193. 

[7]

P. Gérard, T. Kappeler and P. Topalov, Sharp well-posedness results for the Benjamin-Ono equation in $H^{s}(\mathbb T, \mathbb R)$ and qualitative properties of its solution, to appear in Acta Math., arXiv: 2004.04857.

[8]

P. Gérard, T. Kappeler and P. Topalov, On smoothing properties and Tao's gauge transform of the Benjamin-Ono equation on the torus, preprint, 2021, arXiv: 2109.00610.

[9]

P. Gérard, T. Kappeler and P. Topalov, On the spectrum of the Lax operator of the Benjamin-Ono equation on the torus, J. Funct. Anal., 279 (2020), 75pp. doi: 10.1016/j.jfa.2020.108762.

[10]

B. Grébert and T. Kappeler, The Defocusing NLS Equation and Its Normal Form, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2014. doi: 10.4171/131.

[11]

T. Kappeler and R. Montalto, Canonical coordinates with tame estimates for the defocusing NLS equation on the circle, Int. Math. Res. Not. IMNR, 2018 (2018), 1473-1531.  doi: 10.1093/imrn/rnw233.

[12]

T. Kappeler and R. Montalto, Normal form coordinates for the KdV equation having expansions in terms of pseudodifferential operators, Comm. Math. Phys., 375 (2020), 833-913.  doi: 10.1007/s00220-019-03498-1.

[13]

T. Kappeler and R. Montalto, On the stability of periodic multi-solitons of the KdV equation, Comm. Math. Phys., 385 (2021), 1871-1956.  doi: 10.1007/s00220-021-04089-9.

[14]

T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, A Series of Modern Surveys in Mathematics, 45, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-08054-2.

[15]

T. KappelerB. Schaad and P. Topalov, Qualitative features of periodic solutions of KdV, Comm. Partial Differential Equations, 38 (2013), 1626-1673.  doi: 10.1080/03605302.2013.814141.

[16]

T. KappelerB. Schaad and P. Topalov, Semi-linearity of the non-linear Fourier transform of the defocusing NLS equation, Int. Math. Res. Not. IMRN, 2016 (2016), 7212-7229.  doi: 10.1093/imrn/rnv397.

[17]

I. Krichever, Perturbation theory in periodic problems for two-dimensional integrable systems, Soviet Scientific Reviews C. Math. Phys., 9 (1991), 1-103. 

[18]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000

[19]

S. Kuksin and G. Perelman, Vey theorem in infinite dimensions and its application to KdV, Discrete Contin. Dyn. Syst., 27 (2010), 1-24.  doi: 10.3934/dcds.2010.27.1.

[20]

G. Métivier, Para-Differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, 5, Edizioni della Normale, Pisa, 2008.

[21]

J.-C. Saut, Benjamin-Ono and intermediate long wave equations: Modeling, IST, and PDE, in Nonlinear Dispersive Partial Differential Equations and Inverse Scattering, Fields Inst. Commun., 83, Springer, New York, 2019, 95–160.

[1]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[2]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[3]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[4]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[5]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[6]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[7]

Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689

[8]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[9]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure and Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[10]

Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185

[11]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure and Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291

[12]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[13]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[14]

Robert Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5189-5215. doi: 10.3934/dcds.2020225

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057

[17]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[18]

José R. Quintero, Alex M. Montes. Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type. Evolution Equations and Control Theory, 2022, 11 (3) : 681-709. doi: 10.3934/eect.2021021

[19]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[20]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (111)
  • HTML views (94)
  • Cited by (0)

Other articles
by authors

[Back to Top]