doi: 10.3934/dcds.2022051
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Achievable connectivities of Fatou components for a family of singular perturbations

1. 

Institut Universitari de Matemàtiques i Aplicacions de Castelló (IMAC), Universitat Jaume I, 12071 Castelló de la Plana, Spain

2. 

Departament de Matemàtiques i Informàtica at Universitat de Barcelona, and Barcelona Graduate School of Mathematics, 08007 Barcelona, Spain

Corresponding author: Dan Paraschiv

Received  February 2021 Early access April 2022

In this paper we study the connectivity of Fatou components for maps in a large family of singular perturbations. We prove that, for some parameters inside the family, the dynamical planes for the corresponding maps present Fatou components of arbitrarily large connectivity and we determine precisely these connectivities. In particular, these results extend the ones obtained in [5,6].

Citation: Jordi Canela, Xavier Jarque, Dan Paraschiv. Achievable connectivities of Fatou components for a family of singular perturbations. Discrete and Continuous Dynamical Systems, doi: 10.3934/dcds.2022051
References:
[1]

I. N. BakerJ. Kotus and Y. N. Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems., 11 (1991), 603-618.  doi: 10.1017/S0143385700006386.

[2]

A. F. Beardon, Iteration of Rational Functions, Complex analytic dynamical systems. Graduate Texts in Mathematics, 132. Springer-Verlag, New York, 1991.

[3]

P. BlanchardR. L. DevaneyA. Garijo and E. D. Russell, A generalized version of the McMullen domain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2309-2318.  doi: 10.1142/S0218127408021725.

[4]

B. Branner and N. Fagella, Quasiconformal Surgery in Holomorphic Dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, 2014.

[5]

J. Canela, Singular perturbations of Blaschke products and connectivity of Fatou components, Discrete Contin. Dyn. Syst., 37 (2017), 3567-3585.  doi: 10.3934/dcds.2017153.

[6]

J. Canela, Rational maps with Fatou components of arbitrarily large connectivity, J. Math. Anal. Appl., 462 (2018), 36-56.  doi: 10.1016/j.jmaa.2018.01.061.

[7]

J. CanelaN. Fagella and A. Garijo, On a family of rational perturbations of the doubling map, J. Difference Equ. Appl., 21 (2015), 715-741.  doi: 10.1080/10236198.2015.1050387.

[8]

L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4364-9.

[9]

R. L. DevaneyD. M. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J., 54 (2005), 1621-1634.  doi: 10.1512/iumj.2005.54.2615.

[10]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18 (1985), 287-343.  doi: 10.24033/asens.1491.

[11]

A. GarijoS. M. Marotta and E. D. Russell, Singular perturbations in the quadratic family with multiple poles, J. Difference Equ. Appl., 19 (2013), 124-145.  doi: 10.1080/10236198.2011.630668.

[12]

I. Hiroyuki, Personal communication.

[13]

C. McMullen, Automorphisms of rational maps, Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., Springer, New York, 10 (1988), 31–60. doi: 10.1007/978-1-4613-9602-4_3.

[14]

J. Milnor, Dynamics in One Complex Variable, 3rd edition, Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006.

[15]

——, Cubic polynomial maps with periodic critical orbit. I, Complex Dynamics, A. K Peters, Wellesley, MA, (2009), 333–411.

[16]

J. Y. Qiao and J. Y. Gao, The connectivity numbers of Fatou components of rational mappings, Acta Math. Sinica (Chin. Ser.), 47 (2004), 625-628. 

[17]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, Ann. Sci. École Norm. Sup., 40 (2007), 901-949.  doi: 10.1016/j.ansens.2007.10.001.

[18]

N. Steinmetz, The formula of Riemann-Hurwitz and iteration of rational functions, Complex Variables Theory Appl., 22 (1993), 203-206.  doi: 10.1080/17476939308814660.

[19]

D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math., 122 (1985), 401-418.  doi: 10.2307/1971308.

show all references

References:
[1]

I. N. BakerJ. Kotus and Y. N. Lü, Iterates of meromorphic functions. III. Preperiodic domains, Ergodic Theory Dynam. Systems., 11 (1991), 603-618.  doi: 10.1017/S0143385700006386.

[2]

A. F. Beardon, Iteration of Rational Functions, Complex analytic dynamical systems. Graduate Texts in Mathematics, 132. Springer-Verlag, New York, 1991.

[3]

P. BlanchardR. L. DevaneyA. Garijo and E. D. Russell, A generalized version of the McMullen domain, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2309-2318.  doi: 10.1142/S0218127408021725.

[4]

B. Branner and N. Fagella, Quasiconformal Surgery in Holomorphic Dynamics, Cambridge Studies in Advanced Mathematics, vol. 141, Cambridge University Press, 2014.

[5]

J. Canela, Singular perturbations of Blaschke products and connectivity of Fatou components, Discrete Contin. Dyn. Syst., 37 (2017), 3567-3585.  doi: 10.3934/dcds.2017153.

[6]

J. Canela, Rational maps with Fatou components of arbitrarily large connectivity, J. Math. Anal. Appl., 462 (2018), 36-56.  doi: 10.1016/j.jmaa.2018.01.061.

[7]

J. CanelaN. Fagella and A. Garijo, On a family of rational perturbations of the doubling map, J. Difference Equ. Appl., 21 (2015), 715-741.  doi: 10.1080/10236198.2015.1050387.

[8]

L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4364-9.

[9]

R. L. DevaneyD. M. Look and D. Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J., 54 (2005), 1621-1634.  doi: 10.1512/iumj.2005.54.2615.

[10]

A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup., 18 (1985), 287-343.  doi: 10.24033/asens.1491.

[11]

A. GarijoS. M. Marotta and E. D. Russell, Singular perturbations in the quadratic family with multiple poles, J. Difference Equ. Appl., 19 (2013), 124-145.  doi: 10.1080/10236198.2011.630668.

[12]

I. Hiroyuki, Personal communication.

[13]

C. McMullen, Automorphisms of rational maps, Holomorphic Functions and Moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ., Springer, New York, 10 (1988), 31–60. doi: 10.1007/978-1-4613-9602-4_3.

[14]

J. Milnor, Dynamics in One Complex Variable, 3rd edition, Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006.

[15]

——, Cubic polynomial maps with periodic critical orbit. I, Complex Dynamics, A. K Peters, Wellesley, MA, (2009), 333–411.

[16]

J. Y. Qiao and J. Y. Gao, The connectivity numbers of Fatou components of rational mappings, Acta Math. Sinica (Chin. Ser.), 47 (2004), 625-628. 

[17]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order, Ann. Sci. École Norm. Sup., 40 (2007), 901-949.  doi: 10.1016/j.ansens.2007.10.001.

[18]

N. Steinmetz, The formula of Riemann-Hurwitz and iteration of rational functions, Complex Variables Theory Appl., 22 (1993), 203-206.  doi: 10.1080/17476939308814660.

[19]

D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math., 122 (1985), 401-418.  doi: 10.2307/1971308.

Figure 1.  Dynamical planes of the family $ B_{n, d, a, \lambda}(z) $ for $ d = 3 $. The top-left figure corresponds to $ n = 2 $ and $ \lambda = 2\cdot10^{-8} $; the top-right corresponds to $ n = 3 $ and $ \lambda = -5\cdot10^{-8} $; the bottom-left figure corresponds to $ n = 4 $ and $ \lambda = -6.3\cdot10^{-9} $; and bottom-right corresponds to $ n = 5 $ and $ \lambda = -1.2\cdot10^{-10} $. In all cases we can see the triply connected regions (where the critical point $ \nu_\lambda $ lies) and their eventual preimages, which are Fatou components with increasing connectivity
Figure 2.  Left figure illustrates the dynamical planes of $ M_{n, a} $ for $ n = 2 $ and $ a = (0.9+0.6i) $. Right picture illustrates the dynamical plane of the (perturbed) family $ \mathcal{S}_{n, d, \lambda} $ when the unperturbed map is precisely $ M_{2, a} $, and the pertubation corresponds to $ d = 3 $ and $ \lambda = -10^{-7} $. We can see in the right figure the triply connected Fatou component which contains $ \nu_{ \lambda} $ and its eventual preimages with higher connectivity
Figure 3.  Partition of the dynamical plane with respect to $ \mathcal{A}^{*}_{ \lambda}(\infty) $, $ A_{ \lambda} $, $ T_{ \lambda} $, and $ D_{ \lambda} $, described in Proposition 2. Blue and purple points denote zeros and critical points, respectively
Figure 4.  Partitions of the dynamical plane introduced in Theorem 3.5
Figure 5.  Description of the situation in the proof of Lemma 4.2, where $ k = 2 $ and $ W_2 \subset \mathcal{U}_d $. In this case, $ B_2 = B_{2}^{ \text{out}} \cup \overline{ A_{ \lambda}} \cup B_{2}^{ \text{in}} $
Figure 6.  The top figures correspond to the possible cases of $ \nu_{ \lambda} $ lying in a neighbourhood of $ \partial^ \text{Int} A_{m, \lambda} $. The top figures correspond to the possible cases of $ \nu_{ \lambda} $ lying in a neighbourhood of $ \partial^ \text{Ext} A_{m, \lambda} $
[1]

Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153

[2]

Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211

[3]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[4]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

[5]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[6]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[7]

Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192

[8]

Yan Gao, Luxian Yang, Jinsong Zeng. Subhyperbolic rational maps on boundaries of hyperbolic components. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 319-326. doi: 10.3934/dcds.2021118

[9]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[10]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[11]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[12]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[13]

Cezar Joiţa, William O. Nowell, Pantelimon Stănică. Chaotic dynamics of some rational maps. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 363-375. doi: 10.3934/dcds.2005.12.363

[14]

Guizhen Cui, Wenjuan Peng, Lei Tan. On the topology of wandering Julia components. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 929-952. doi: 10.3934/dcds.2011.29.929

[15]

Jeffrey Diller, Han Liu, Roland K. W. Roeder. Typical dynamics of plane rational maps with equal degrees. Journal of Modern Dynamics, 2016, 10: 353-377. doi: 10.3934/jmd.2016.10.353

[16]

Carlos Cabrera, Peter Makienko, Peter Plaumann. Semigroup representations in holomorphic dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1333-1349. doi: 10.3934/dcds.2013.33.1333

[17]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[18]

Cristina Cross, Alysse Edwards, Dayna Mercadante, Jorge Rebaza. Dynamics of a networked connectivity model of epidemics. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3379-3390. doi: 10.3934/dcdsb.2016102

[19]

Guizhen Cui, Yan Gao. Wandering continua for rational maps. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1321-1329. doi: 10.3934/dcds.2016.36.1321

[20]

Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (105)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]