Let $ f $ be a $ C^{1+\alpha} $ diffeomorphism on a compact manifold $ M $ and let $ \mu $ be an ergodic measure. We use a special family of fake center-stable manifolds to bound the entropy of $ \mu $ in terms of positive Lyapunov exponents and the so called 'dimensional entropy', a notion related to the topological entropy of submanifolds.
Citation: |
[1] |
J. Buzzi, Dimensional entropies and semi-uniform hyperbolicity, In New Trends in Mathematical Physics, (2009), 95–116.
doi: 10.1007/978-90-481-2810-5_8.![]() ![]() |
[2] |
K. Cogswell, Entropy and volume growth, Ergodic Theory Dynam. Systems, 20 (2000), 77-84.
doi: 10.1017/S0143385700000055.![]() ![]() ![]() |
[3] |
A. Fathi, M.-R. Herman and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem, Geometric Dynamics Lecture Notes in Math., Springer, Berlin, 1007 (1983), 177–215.
doi: 10.1007/BFb0061417.![]() ![]() ![]() |
[4] |
X. Guo, G. Liao, W. Sun and D. Yang, On the hybrid control of metric entropy for dominated splittings, Discrete Contin. Dyn. Syst., 38 (2018), 5011-5019.
doi: 10.3934/dcds.2018219.![]() ![]() ![]() |
[5] |
Y. Hua, R. Saghin and Z. Xia, Topological entropy and partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems, 28 (2008), 843-862.
doi: 10.1017/S0143385707000405.![]() ![]() ![]() |
[6] |
A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.
![]() ![]() |
[7] |
A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR (N.S.), 119 (1958), 861-864.
![]() ![]() |
[8] |
W. Kulpa, The Poincaré-Miranda theorem, Amer. Math. Monthly, 104 (1997), 545-550.
doi: 10.2307/2975081.![]() ![]() ![]() |
[9] |
F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math., 122 (1985), 540-574.
doi: 10.2307/1971329.![]() ![]() ![]() |
[10] |
S. E. Newhouse, Entropy and volume, Ergodic Theory Dynam. Systems, 8 (1988), 283-299.
doi: 10.1017/S0143385700009469.![]() ![]() ![]() |
[11] |
V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obš č., 19 (1968), 179-210.
![]() ![]() |
[12] |
D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Mat., 9 (1978), 83-87.
doi: 10.1007/BF02584795.![]() ![]() ![]() |
[13] |
R. Saghin, Volume growth and entropy for $C^{1}$ partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst., 34 (2014), 3789-3801.
doi: 10.3934/dcds.2014.34.3789.![]() ![]() ![]() |
[14] |
P. Walters, An Introduction to Ergodic Theory, Volume 79 of Graduate Texts in Mathematics, Springer-Verlag, New York-Berlin, 1982.
![]() ![]() |
[15] |
Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.
doi: 10.1007/BF02766215.![]() ![]() ![]() |
[16] |
Y. Zang, Entropies and volume growth of strong unstable manifolds, Ergodic Theory Dynam. Systems, 42 (2022), 1576-1590.
doi: 10.1017/etds.2021.2.![]() ![]() ![]() |
Standard family
Maximal separated subset of
Second property in Lemma 2.4
Expansion on different directions
Geometric estimate