In this paper we prove existence (and summability properties) of solutions for the following elliptic system
$ \left\{ \begin{array}{cl} -{\rm{div}}(A(x)\,{\nabla} u) + u^{{\lambda}} = -{\rm{div}}( u^{{\lambda}} \, M(x)\,{\nabla}\psi) + f(x)\,, & {\rm{in }}\; \Omega , \\ -{\rm{div}}(M(x)\,{\nabla}\psi) = u^{\rho}\,, & {\rm{in }}\; \Omega , \\ u = 0 = \psi & \;{\rm{on}}\; \partial\Omega , \end{array} \right. $
under some assumptions on $ {\lambda} > 0 $, $ \rho > 0 $ and $ f(x) $ in $ L^{{m}}(\Omega) $, $ m \geq 1 $.
"Return of the Patriarca" (see [
Citation: |
[1] | P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 241-273. |
[2] | P. Bénilan and H. Brezis, Nonlinear problems related to the Thomas-Fermi equation, J. Evol. Equ., 3 (2003), 673-770. doi: 10.1007/s00028-003-0117-8. |
[3] | L. Boccardo, Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data, Ann. Mat. Pura Appl., 188 (2009), 591-601. doi: 10.1007/s10231-008-0090-5. |
[4] | L. Boccardo, Dirichlet problems with singular convection terms and applications, J. Differential Equations, 258 (2015), 2290-2314. doi: 10.1016/j.jde.2014.12.009. |
[5] | L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655. doi: 10.1080/03605309208820857. |
[6] | L. Boccardo, T. Gallouët and J. L. Vázquez, Nonlinear elliptic equations in ${\bf{R}}^N$ without growth restrictions on the data, J. Differential Equations, 105 (1993), 334-363. doi: 10.1006/jdeq.1993.1092. |
[7] | L. Boccardo and L. Orsina, Sublinear elliptic systems with a convection term, Comm. Partial Differential Equations, 45 (2020), 690-713. doi: 10.1080/03605302.2020.1712417. |
[8] | H. Brézis and F. E. Browder, Strongly nonlinear elliptic boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 587-603. |
[9] | H. Brézis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^{1}$, J. Math. Soc. Japan, 25 (1973), 565-590. doi: 10.2969/jmsj/02540565. |
[10] | G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. doi: 10.5802/aif.204. |
[11] | J. L. Vázquez, The Porous Medium Equation, Oxford University Press, Oxford, 2007. |
The admissible values of
Figure 2: the admissible values of