The main result of this paper is a construction of finitely additive measures for higher rank abelian actions on Heisenberg nilmanifolds. Under a full measure set of Diophantine conditions for the generators of the action, we construct Bufetov functionals on rectangles on $ (2g+1) $-dimensional Heisenberg manifolds. We prove that deviation of the ergodic integral of higher rank actions is described by the asymptotic of Bufetov functionals for a sufficiently smooth function. As a corollary, the distribution of normalized ergodic integrals which have variance 1, converges along certain subsequences to a non-degenerate compactly supported measure on the real line.
Citation: |
[1] |
A. Adam and V. Baladi, Horocycle averages on closed manifolds and transfer operators,, preprint, 2018, arXiv: 1809.04062.
![]() |
[2] |
A. Avila, G. Forni, D. Ravotti and C. Ulcigrai, Mixing for smooth time-changes of general nilflows, Adv. Math., 385 (2021), 107759, 65 pp.
doi: 10.1016/j.aim.2021.107759.![]() ![]() ![]() |
[3] |
A. Avila, G. Forni and C. Ulcigrai, Mixing for the time-changes of heisenberg nilflows, J. Differential Geom., 89 (2011), 369-410.
![]() ![]() |
[4] |
V. Baladi, There are no deviations for the ergodic averages of Giulietti-Liverani horocycle flows on the two-torus, Ergodic Theory Dynam. Systems, 42 (2022), 500-513.
doi: 10.1017/etds.2021.17.![]() ![]() ![]() |
[5] |
A. Brudnyi, On local behavior of analytic functions, J. Funct. Anal., 169 (1999), 481-493.
doi: 10.1006/jfan.1999.3481.![]() ![]() ![]() |
[6] |
A. Bufetov, Hölder cocycles and ergodic integrals for translation flows on flat surfaces, Electron. Res. Announc. Math. Sci., 17 (2010), 34-42.
doi: 10.3934/era.2010.17.34.![]() ![]() ![]() |
[7] |
____, Limit theorems for suspension flows over Vershik automorphisms, Russian Mathematical Surveys, 68 (2013), 789.
![]() |
[8] |
A. I. Bufetov, Finitely-additive measures on the asymptotic foliations of a markov compactum, Mosc. Math. J., 14 (2014), 205-224.
doi: 10.17323/1609-4514-2014-14-2-205-224.![]() ![]() ![]() |
[9] |
A. I. Bufetov, Limit theorems for translation flows, Ann. of Math., 179 (2014), 431-499.
doi: 10.4007/annals.2014.179.2.2.![]() ![]() ![]() |
[10] |
A. Bufetov and G. Forni, Limit theorems for horocycle flows, Ann. Sci. Éc. Norm. Supér., 47 (2014), 851-903.
doi: 10.24033/asens.2229.![]() ![]() ![]() |
[11] |
A. Bufetov and B. Solomyak, Limit theorems for self-similar tilings, Comm. Math. Phys., 319 (2013), 761-789.
doi: 10.1007/s00220-012-1624-7.![]() ![]() ![]() |
[12] |
O. Butterley and L. Simonelli, Parabolic flows renormalized by partially hyperbolic maps, Boll. Unione Mat. Ital., 13 (2020), 341-360.
doi: 10.1007/s40574-020-00235-8.![]() ![]() ![]() |
[13] |
F. Cellarosi, J. Griffin and T. Osman, Improved tail estimates for the distribution of quadratic weyl sums,, preprint, 2022, arXiv: 2203.06274.
![]() |
[14] |
F. Cellarosi and J. Marklof, Quadratic weyl sums, automorphic functions and invariance principles, Proc. Lond. Math. Soc., 113 (2016), 775-828.
doi: 10.1112/plms/pdw038.![]() ![]() ![]() |
[15] |
S. Cosentino and L. Flaminio, Equidistribution for higher-rank Abelian actions on Heisenberg nilmanifolds, J. Mod. Dyn., 9 (2015), 305-353.
doi: 10.3934/jmd.2015.9.305.![]() ![]() ![]() |
[16] |
D. Dolgopyat and O. Sarig, Temporal distributional limit theorems for dynamical systems, J. Stat. Phys., 166 (2017), 680-713.
doi: 10.1007/s10955-016-1689-3.![]() ![]() ![]() |
[17] |
F. Faure, S. Gouëzel and E. Lanneau, Ruelle spectrum of linear pseudo-anosov maps, J. Éc. polytech. Math., 6 (2019), 811-877.
doi: 10.5802/jep.107.![]() ![]() ![]() |
[18] |
H. Fiedler, W. Jurkat, and O. Körner, Asymptotic expansions of finite theta series., Acta Arithmetica 32.2 (1977): 129-146.
![]() |
[19] |
F. Faure and M. Tsujii, Prequantum Transfer Operator for Symplectic Anosov Diffeomorphism, Astérisque, 2015.
![]() ![]() |
[20] |
L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums, Ergodic Theory Dynam. Systems, 26 (2006), 409-433.
doi: 10.1017/S014338570500060X.![]() ![]() ![]() |
[21] |
____, On effective equidistribution for higher step nilflows, preprint, 2014, arXiv: 1407.3640.
![]() |
[22] |
L. Flaminio, G. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geom. Funct. Anal., 26 (2016), 1359-1448.
doi: 10.1007/s00039-016-0385-4.![]() ![]() ![]() |
[23] |
G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., 155 (2002), 1-103.
doi: 10.2307/3062150.![]() ![]() ![]() |
[24] |
____, Effective Equidistribution of Nilflows and Bounds on Weyl Sums., Dynamics and Analytic Number Theory, 437 (2016): 136.
![]() |
[25] |
____, On the equidistribution of unstable curves for pseudo-anosov diffeomorphisms of compact surfaces, Ergodic Theory Dynam. Systems, 42 (2020), 855–880.
doi: 10.1017/etds.2021.119.![]() ![]() ![]() |
[26] |
____, Ruelle resonances from cohomological equations, preprint, (2020), arXiv: 2007.03116.
![]() |
[27] |
G. Forni and A. Kanigowski, Multiple mixing and disjointness for time changes of bounded-type Heisenberg nilflows, J. Éc. Polytech. Math., 7 (2020), 63-91.
doi: 10.5802/jep.111.![]() ![]() ![]() |
[28] |
____, Time-changes of heisenberg nilflows, Asterisque, 416 (2020), 253–299
![]() |
[29] |
P. Giulietti and C. Liverani, Parabolic dynamics and anisotropic Banach spaces, J. Eur. Math. Soc., 21 (2019), 2793-2858.
doi: 10.4171/JEMS/892.![]() ![]() ![]() |
[30] |
A. Gorodnik, Mixing properties of commuting nilmanifold automorphisms, Acta Math., 215 (2015), 127-159.
![]() |
[31] |
A. Gorodnik and R. Spatzier, Exponential mixing of nilmanifold automorphisms, J. Anal. Math., 123 (2014), 355-396.
doi: 10.1007/s11854-014-0024-7.![]() ![]() ![]() |
[32] |
F. Götze and M. Gordin, Limiting distributions of theta series on siegel half-spaces, St. Petersburg Math. J., 15 (2004), 81-102.
doi: 10.1090/S1061-0022-03-00803-3.![]() ![]() ![]() |
[33] |
J. Griffin and J. Marklof, Limit theorems for skew translations, J. Mod. Dyn., 8 (2014), 177-189.
doi: 10.3934/jmd.2014.8.177.![]() ![]() ![]() |
[34] |
A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, No. 30. American Mathematical Soc., 2003.
doi: 10.1090/ulect/030.![]() ![]() ![]() |
[35] |
A. Katok and S. Katok, Higher cohomology for abelian groups of toral automorphisms, Ergodic Theory and Dynamical Systems, 15 (1995), 569-592.
doi: 10.1017/S0143385700008531.![]() ![]() ![]() |
[36] |
M. Kim, Effective equidistribution for generalized higher step nilflows, Ergodic Theory and Dynamical Systems, (2021), 1–60.
doi: 10.1017/etds.2021.110.![]() ![]() |
[37] |
D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.
doi: 10.1007/s002220050350.![]() ![]() ![]() |
[38] |
J. Marklof, Limit theorems for theta sums, Duke Math. J., 97 (1999), 127-153.
doi: 10.1215/S0012-7094-99-09706-5.![]() ![]() ![]() |
[39] |
S. Marmi, P. Moussa and J.-C. Yoccoz, Affine interval exchange maps with a wandering interval, Proc. Lond. Math. Soc., 100 (2010), 639-669.
doi: 10.1112/plms/pdp037.![]() ![]() ![]() |
[40] |
S. Marmi, C. Ulcigrai and J.-C. Yoccoz, On Roth type conditions, duality and central Birkhoff sums for iem, Astérisque, 416 (2020), 65-132.
![]() ![]() |
[41] |
D. Mumford and C. Musili, Tata Lectures on Theta. i (modern Birkhäuser Classics), Birkhäuser Boston Incorporated, 2007.
![]() ![]() |
[42] |
D. Mumford, M. Nori and P. Norman, Tata Lectures on Theta iii, Birkhäuser Boston, Inc., Boston, MA, 2007.
![]() ![]() |
[43] |
D. Ravotti, Mixing for suspension flows over skew-translations and time-changes of quasi-abelian filiform nilflows, Ergodic Theory Dynam. Systems, 39 (2019), 3407-3436.
doi: 10.1017/etds.2018.19.![]() ![]() ![]() |
[44] |
____, Asymptotics and limit theorems for horocycle ergodic integrals a la Ratner, preprint, (2021), arXiv: 2107.02090.
![]() |
[45] |
N. Shah, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J., 148 (2009), 251-279.
doi: 10.1215/00127094-2009-026.![]() ![]() ![]() |
[46] |
N. A. Shah, Asymptotic evolution of smooth curves under geodesic flow on hyperbolic manifolds, Duke Math. J., 148 (2009), 281-304.
doi: 10.1215/00127094-2009-027.![]() ![]() ![]() |
[47] |
D. Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.
doi: 10.1007/BF02392354.![]() ![]() ![]() |
[48] |
R. Tolimieri, Heisenberg manifolds and theta functions, Trans. Amer. Math. Soc., 239 (1978), 293-319.
doi: 10.1090/S0002-9947-1978-0487050-7.![]() ![]() ![]() |
[49] |
T.D Wooley., Perturbations of Weyl sums, International Mathematics Research Notices 2016.9 (2015): 2632-2646.
![]() |
Illustration of the rectangles
Illustration of the standard