doi: 10.3934/dcds.2022059
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

2. 

Dipartimento di Matematica e Fisica Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25133, Brescia, Italy

*Corresponding author: Marco Squassina

Received  October 2021 Revised  March 2022 Early access April 2022

Fund Project: Marco Squassina is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilita e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Minbo Yang was partially supported by NSFC (11971436, 12011530199) and ZJNSF(LZ22A010001, LD19A010001)

We study a class of gauged nonlinear Schrödinger equations in the plane
$ \left\{ \begin{array}{l} -\Delta u+V(|x|) u+\lambda\bigg(\int_{|x|}^\infty \frac{h_u(s)}{s}u^2(s)ds+\frac{h_u^2(|x|)}{|x|^2} \bigg)u\\\qquad \, = K(|x|)f(u)+\mu g(|x|)|u|^{q-2}u, \\ u(x) = u(|x|) \; {\rm{in}}\; \mathbb{R}^2, \\\\ \end{array} \right. $
where
$ h_u(s) = \int_0^s\frac{r}{2}u^2(r)dr $
,
$ \lambda,\mu>0 $
are constants,
$ V(|x|) $
and
$ K(|x|) $
are continuous functions vanishing at infinity. Assume that
$ f $
is of critical exponential growth and
$ g(x) = g(|x|) $
satisfies some technical assumptions with
$ 1\leq q<2 $
, we obtain the existence of two nontrivial solutions via the Mountain-Pass theorem and Ekeland's variational principle. Moreover, with the help of the genus theory, we prove the existence of infinitely many solutions if
$ f $
in addition is odd.
Citation: Liejun Shen, Marco Squassina, Minbo Yang. Critical gauged Schrödinger equations in $ \mathbb{R}^2 $ with vanishing potentials. Discrete and Continuous Dynamical Systems, doi: 10.3934/dcds.2022059
References:
[1]

Adimurthi and S. L. Yadava, Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa, 17 (1990), 481-504. 

[2]

Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN, 2010 (2010), 2394-2426.  doi: 10.1093/imrn/rnp194.

[3]

F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 40, 30 pp. doi: 10.1007/s00526-020-01902-6.

[4]

F. S. B. AlbuquerqueM. C. Ferreira and U. B. Severo, Ground state solutions for a nonlocal equation in $ \mathbb{R}^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263-294.  doi: 10.1007/s00032-021-00334-x.

[5]

C. O. AlvesM. A. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.

[6]

J. G. Azorero and I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.  doi: 10.1090/S0002-9947-1991-1083144-2.

[7]

A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern-Simons-Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 165, 30 pp. doi: 10.1007/s00526-021-02031-4.

[8]

H. BerestyckiT. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307-310. 

[9]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.

[11]

L. BergéA. de Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.

[12]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.

[13]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.

[14]

D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differential Equations, 17 (1992), 407-435.  doi: 10.1080/03605309208820848.

[15]

P. CunhaP. d'AveniaA. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22 (2015), 1831-1850.  doi: 10.1007/s00030-015-0346-x.

[16]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.

[17]

M. de Souza and J. M. do Ó, A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$, Trans. Amer. Math. Soc., 366 (2014), 4513-4549.  doi: 10.1090/S0002-9947-2014-05811-X.

[18]

Y. DengS. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 264 (2018), 4006-4035.  doi: 10.1016/j.jde.2017.12.003.

[19]

M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partical Differential Equations, 55 (2016), Art. 88, 26 pp. doi: 10.1007/s00526-016-1014-7.

[20]

J. M. do Ó, N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.  doi: 10.1155/S1085337597000419.

[21]

J. M. do ÓE. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.  doi: 10.1016/j.jmaa.2008.03.074.

[22]

J. M. do ÓE. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^n$, J. Differential Equations, 246 (2009), 1363-1386.  doi: 10.1016/j.jde.2008.11.020.

[23]

G. Dunne, Self-Dual Chern-Simons Theories, Springer, 1995. doi: 10.1007/978-3-540-44777-1.

[24]

I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.  doi: 10.1090/S0273-0979-1979-14595-6.

[25]

H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.  doi: 10.1088/0951-7715/22/5/003.

[26]

R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.

[27]

R. Jackiw and S. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.

[28]

C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.  doi: 10.1016/j.jmaa.2017.01.065.

[29]

Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 1550074, 20 pp. doi: 10.1142/S0219199715500741.

[30]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.  doi: 10.1016/j.jfa.2005.04.005.

[31]

M. A. Krasnoselski$\mathop {\rm{i}}\limits^ \vee $, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[32]

N. Lam and G. Lu, Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $ \mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.  doi: 10.1016/j.jfa.2011.10.012.

[33]

Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^{N}$, Indiana Univ. Math. J., 57 (2008), 451-480.  doi: 10.1512/iumj.2008.57.3137.

[34]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam, 1 (1985), 145-201.  doi: 10.4171/RMI/6.

[35]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/1971), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.

[36]

S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, In: Proc. Tech. Sci. Conf. on Adv. Sci., Research, 1964–1965; Math. Section, Moscow, (1965), 158–170.

[37]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.

[38]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.

[39]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, AMS, Providence RI, 1986. doi: 10.1090/cbms/065.

[40]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340-367.  doi: 10.1016/j.jfa.2004.06.013.

[41]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.

[42]

J. SuZ.-Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.

[43]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.  doi: 10.1512/iumj.1968.17.17028.

[44]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[45]

Y. Yang and X. Zhu, Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal., 272 (2017), 3347-3374.  doi: 10.1016/j.jfa.2016.12.028.

show all references

References:
[1]

Adimurthi and S. L. Yadava, Multiplicity results for semilinear elliptic equations in bounded domain of $\mathbb{R}^{2}$ involving critical exponent, Ann. Sc. Norm. Super. Pisa, 17 (1990), 481-504. 

[2]

Adimurthi and Y. Yang, An interpolation of Hardy inequality and Trudinger-Moser inequality in $ \mathbb{R}^N$ and its applications, Int. Math. Res. Not. IMRN, 2010 (2010), 2394-2426.  doi: 10.1093/imrn/rnp194.

[3]

F. S. B. Albuquerque, J. L. Carvalho, G. M. Figueiredo and E. S. Medeiros, On a planar non-autonomous Schrödinger-Poisson system involving exponential critical growth, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 40, 30 pp. doi: 10.1007/s00526-020-01902-6.

[4]

F. S. B. AlbuquerqueM. C. Ferreira and U. B. Severo, Ground state solutions for a nonlocal equation in $ \mathbb{R}^2$ involving vanishing potentials and exponential critical growth, Milan J. Math., 89 (2021), 263-294.  doi: 10.1007/s00032-021-00334-x.

[5]

C. O. AlvesM. A. Souto and M. Montenegro, Existence of a ground state solution for a nonlinear scalar field equation with critical growth, Calc. Var. Partial Differential Equations, 43 (2012), 537-554.  doi: 10.1007/s00526-011-0422-y.

[6]

J. G. Azorero and I. P. Alonso, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.  doi: 10.1090/S0002-9947-1991-1083144-2.

[7]

A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern-Simons-Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 165, 30 pp. doi: 10.1007/s00526-021-02031-4.

[8]

H. BerestyckiT. Gallouët and O. Kavian, Équations de champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci. Paris Sér. I Math., 297 (1983), 307-310. 

[9]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅱ. Existence of infinitely many solutions, Arch. Ration. Mech. Anal., 82 (1983), 347-375.  doi: 10.1007/BF00250556.

[11]

L. BergéA. de Bouard and J. C. Saut, Blowing up time-dependent solutions of the planar Chern-Simons gauged nonlinear Schrödinger equation, Nonlinearity, 8 (1995), 235-253.  doi: 10.1088/0951-7715/8/2/007.

[12]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.

[13]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.

[14]

D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differential Equations, 17 (1992), 407-435.  doi: 10.1080/03605309208820848.

[15]

P. CunhaP. d'AveniaA. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22 (2015), 1831-1850.  doi: 10.1007/s00030-015-0346-x.

[16]

D. G. de FigueiredoO. H. Miyagaki and B. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations, 3 (1995), 139-153.  doi: 10.1007/BF01205003.

[17]

M. de Souza and J. M. do Ó, A sharp Trudinger-Moser type inequality in $ \mathbb{R}^2$, Trans. Amer. Math. Soc., 366 (2014), 4513-4549.  doi: 10.1090/S0002-9947-2014-05811-X.

[18]

Y. DengS. Peng and W. Shuai, Nodal standing waves for a gauged nonlinear Schrödinger equation in $ \mathbb{R}^2$, J. Differential Equations, 264 (2018), 4006-4035.  doi: 10.1016/j.jde.2017.12.003.

[19]

M. Dong and G. Lu, Best constants and existence of maximizers for weighted Trudinger-Moser inequalities, Calc. Var. Partical Differential Equations, 55 (2016), Art. 88, 26 pp. doi: 10.1007/s00526-016-1014-7.

[20]

J. M. do Ó, N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.  doi: 10.1155/S1085337597000419.

[21]

J. M. do ÓE. Medeiros and U. Severo, A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.  doi: 10.1016/j.jmaa.2008.03.074.

[22]

J. M. do ÓE. Medeiros and U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in $ \mathbb{R}^n$, J. Differential Equations, 246 (2009), 1363-1386.  doi: 10.1016/j.jde.2008.11.020.

[23]

G. Dunne, Self-Dual Chern-Simons Theories, Springer, 1995. doi: 10.1007/978-3-540-44777-1.

[24]

I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474.  doi: 10.1090/S0273-0979-1979-14595-6.

[25]

H. Huh, Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.  doi: 10.1088/0951-7715/22/5/003.

[26]

R. Jackiw and S. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.

[27]

R. Jackiw and S. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.

[28]

C. Ji and F. Fang, Standing waves for the Chern-Simons-Schrödinger equation with critical exponential growth, J. Math. Anal. Appl., 450 (2017), 578-591.  doi: 10.1016/j.jmaa.2017.01.065.

[29]

Y. Jiang, A. Pomponio and D. Ruiz, Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18 (2016), 1550074, 20 pp. doi: 10.1142/S0219199715500741.

[30]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370.  doi: 10.1016/j.jfa.2005.04.005.

[31]

M. A. Krasnoselski$\mathop {\rm{i}}\limits^ \vee $, Topological Methods in the Theory of Nonlinear Integral Equations, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[32]

N. Lam and G. Lu, Existence and multiplicity of solutions to equations of $N$-Laplacian type with critical exponential growth in $ \mathbb{R}^N$, J. Funct. Anal., 262 (2012), 1132-1165.  doi: 10.1016/j.jfa.2011.10.012.

[33]

Y. Li and B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^{N}$, Indiana Univ. Math. J., 57 (2008), 451-480.  doi: 10.1512/iumj.2008.57.3137.

[34]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoam, 1 (1985), 145-201.  doi: 10.4171/RMI/6.

[35]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/1971), 1077-1092.  doi: 10.1512/iumj.1971.20.20101.

[36]

S. I. Pohozaev, The Sobolev embedding in the case $pl = n$, In: Proc. Tech. Sci. Conf. on Adv. Sci., Research, 1964–1965; Math. Section, Moscow, (1965), 158–170.

[37]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.

[38]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.

[39]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, In: CBMS Regional Conference Series in Mathematics, vol. 65, AMS, Providence RI, 1986. doi: 10.1090/cbms/065.

[40]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $ \mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340-367.  doi: 10.1016/j.jfa.2004.06.013.

[41]

W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.

[42]

J. SuZ.-Q. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying radial potentials, Commun. Contemp. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.

[43]

N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-484.  doi: 10.1512/iumj.1968.17.17028.

[44]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[45]

Y. Yang and X. Zhu, Blow-up analysis concerning singular Trudinger-Moser inequalities in dimension two, J. Funct. Anal., 272 (2017), 3347-3374.  doi: 10.1016/j.jfa.2016.12.028.

[1]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[2]

Guofa Li, Yisheng Huang. Positive solutions for critical quasilinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3971-3989. doi: 10.3934/dcdsb.2021214

[3]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[4]

Yinbin Deng, Wei Shuai. Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2273-2287. doi: 10.3934/cpaa.2014.13.2273

[5]

Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036

[6]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure and Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723

[9]

Eduard Toon, Pedro Ubilla. Existence of positive solutions of Schrödinger equations with vanishing potentials. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5831-5843. doi: 10.3934/dcds.2020248

[10]

Juan Arratia, Denilson Pereira, Pedro Ubilla. Elliptic systems involving Schrödinger operators with vanishing potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1369-1401. doi: 10.3934/dcds.2021156

[11]

Edcarlos D. Silva, Jefferson S. Silva. Multiplicity of solutions for critical quasilinear Schrödinger equations using a linking structure. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5441-5470. doi: 10.3934/dcds.2020234

[12]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[13]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[14]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

[15]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[16]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2065-2100. doi: 10.3934/cpaa.2021058

[17]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[18]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[19]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[20]

Federica Sani. A biharmonic equation in $\mathbb{R}^4$ involving nonlinearities with critical exponential growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 405-428. doi: 10.3934/cpaa.2013.12.405

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (143)
  • HTML views (42)
  • Cited by (0)

Other articles
by authors

[Back to Top]