We prove the comparison principle for viscosity sub and super solutions of degenerate nonlocal operators with general nonlocal gradient nonlinearities. The proofs apply to purely Hamilton-Jacobi equations of order $ 0<s<1 $.
Citation: |
[1] | B. Abdellaoui and A. J. Fernández, Nonlinear fractional Laplacian problems with nonlocal "gradient terms", Proc. Royal Soc. Edinburgh Sect. A, 150 (2020), 2682-2718. doi: 10.1017/prm.2019.60. |
[2] | M. Arisawa, A remark on the definitions of viscosity solutions for the integro-differential equations with Lévy operators, J. Math. Pures Appl., 89 (2008), 567-574. doi: 10.1016/j.matpur.2008.02.005. |
[3] | V. I. Arnold, Mathematical Methods of Classical Mechanics, 2$^{nd}$ edition. Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1. |
[4] | D. Bakry and M. Émery, Diffusions hypercontractives, In Séminaire de Probabilit és, XIX, 1983/84, Lecture Notes in Math, Springer, Berlin, 1123 (1985), 177–206. doi: 10.1007/BFb0075847. |
[5] | D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 348, Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9. |
[6] | A. Banerjee, G. Dávila and Y. Sire, Regularity for parabolic systems with critical growth in the gradient and applications, To appear, Journal d'Analyse Mathématique. |
[7] | M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1997. doi: 10.1007/978-0-8176-4755-1. |
[8] | G. Barles, Existence results for first order Hamilton Jacobi equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 325-340. doi: 10.1016/s0294-1449(16)30415-2. |
[9] | G. Barles, Uniqueness for first-order Hamilton-Jacobi equations and Hopf formula, J. Differential Equations, 69 (1987), 346-367. doi: 10.1016/0022-0396(87)90124-0. |
[10] | G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin), 17. Springer-Verlag, Paris, 1994. |
[11] | G. Barles, An introduction to the theory of viscosity solutions for first-order Hamilton-Jacobi equations and applications, Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Lecture Notes in Math., 2074 (2013), 49–109 doi: 10.1007/978-3-642-36433-4_2. |
[12] | G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., 57 (2008), 213-246. doi: 10.1512/iumj.2008.57.3315. |
[13] | G. Barles and C. Imbert, Second-order elliptic integro-differential equations: Viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567-585. doi: 10.1016/j.anihpc.2007.02.007. |
[14] | G. Barles and P. E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939. doi: 10.1137/S0036141099350869. |
[15] | A. Barrasso and F. Russo, Martingale driven BSDEs, PDEs and other related deterministic problems, Stochastic Process. Appl., 133 (2021), 193-228. doi: 10.1016/j.spa.2020.11.007. |
[16] | A. Barrasso and F. Russo, Decoupled mild solutions of path-dependent PDEs and integro PDEs represented by BSDEs driven by cadlag martingales, Potential Anal., 53 (2020), 449-481. doi: 10.1007/s11118-019-09775-x. |
[17] | B. Barrios and M. Medina, Equivalence of weak and viscosity solutions in fractional non-homogeneous problems, Math. Ann., 381 (2021), 1979-2012. doi: 10.1007/s00208-020-02119-w. |
[18] | L. A. Caffarelli and G. Dávila, Interior regularity for fractional systems, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 36 (2019), 165-180. doi: 10.1016/j.anihpc.2018.04.004. |
[19] | E. Chasseigne and E. R. Jakobsen, On nonlocal quasilinear equations and their local limits, J. Differential Equations, 262 (2017), 3759-3804. doi: 10.1016/j.jde.2016.12.001. |
[20] | M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations, 3 (1990), 1001-1014. |
[21] | F. Da Lio and A. Pigati, Free boundary minimal surfaces: A nonlocal approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (2020), 437-489. doi: 10.2422/2036-2145.201801_008. |
[22] | F. Da Lio and T. Rivière, Three-term commutator estimates and the regularity of 1/2-harmonic maps into spheres, Anal. PDE, 4 (2011), 149-190. doi: 10.2140/apde.2011.4.149. |
[23] | F. Da Lio and T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 227 (2011), 1300-1348. doi: 10.1016/j.aim.2011.03.011. |
[24] | G. Dávila, A. Quaas and E. Topp, Harnack Inequality and self-similar solutions for fully nonlinear fractional parabolic equations, preprint, 2019, arXiv: 1909.02624 |
[25] | G. Dávila and E. Topp, The Nonlocal Inverse Problem of Donsker and Varadhan, preprint, 2019, arXiv: 2011.13295 |
[26] | B. Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal., 15 (2012), 536-555. doi: 10.2478/s13540-012-0038-8. |
[27] | N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71. doi: 10.1111/1467-9965.00022. |
[28] | H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384. doi: 10.1215/S0012-7094-87-05521-9. |
[29] | H. Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkcial. Ekvac., 38 (1995), 101-120. |
[30] | E. R. Jakobsen and K. H. Karlsen, A "maximum principle for semicontinuous functions" applicable to integro-partial differential equations, NoDEA Nonlinear Differential Equations Appl., 13 (2006), 137-165. doi: 10.1007/s00030-005-0031-6. |
[31] | Z. M. Ma and M. Röckner, Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Universitext. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-77739-4. |
[32] | V. Millot and Y. Sire, On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres, Arch. Ration. Mech. Anal., 215 (2015), 125-210. doi: 10.1007/s00205-014-0776-3. |
[33] | G. Namah and J. M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893. doi: 10.1080/03605309908821451. |
[34] | X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003. |
[35] | X. Ros-Oton and J. Serra, The pohozaev identity for the fractional laplacian, Arch Rational Mech. Anal., 213 (2014), 587-628. doi: 10.1007/s00205-014-0740-2. |
[36] | A. Spener, F. Weber and R. Zacher, The fractional Laplacian has infinite dimension, Comm. Partial Differential Equations, 45 (2020), 57-75. doi: 10.1080/03605302.2019.1663434. |