We focus on a class of derivative nonlinear Schrödinger equation with reversible nonlinear term depending on spatial variable $ x $:
$ \begin{equation*} \mathrm{i} u_t+u_{xx}-\bar{u}u_{x}^2 + F(x, u, \bar{u}, u_{x}, \bar{u}_{x}) = 0, \quad x\in \mathbb{T}: = \mathbb{R}/2\pi\mathbb{Z}, \end{equation*} $
where the nonlinear term $ F $ is an analytic function of order at least five in $ u, \bar{u}, u_{x}, \bar{u}_{x} $ and satisfies
$ \begin{equation*} F(x, u, \bar{u}, u_{x}, \bar{u}_{x}) = \overline{F(x, \bar{u}, u, \bar{u}_{x}, u_{x})}. \end{equation*} $
Moreover, we also assume that $ F $ satisfies the homogeneous condition (6) to overcome the degeneracy. We prove the existence of small amplitude, smooth quasi-periodic solutions for the above equation via establishing an abstract infinite dimensional Kolmogorov–Arnold–Moser (KAM) theorem for reversible systems with unbounded perturbation.
Citation: |
[1] |
P. Baldi, M. Berti, E. Haus and R. Montalto, KAM for gravity water waves in finite depth, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 29 (2018), 215-236.
doi: 10.4171/RLM/802.![]() ![]() ![]() |
[2] |
P. Baldi, M. Berti, E. Haus and R. Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. Math., 214 (2018), 739-911.
doi: 10.1007/s00222-018-0812-2.![]() ![]() ![]() |
[3] |
P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536.
doi: 10.1007/s00208-013-1001-7.![]() ![]() ![]() |
[4] |
P. Baldi, M. Berti and R. Montalto, KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1589-1638.
doi: 10.1016/j.anihpc.2015.07.003.![]() ![]() ![]() |
[5] |
M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equation, Ann. Sci. Éc. Norm. Supér., 46 (2013), 301–373.
doi: 10.24033/asens.2190.![]() ![]() ![]() |
[6] |
M. Berti, L. Biasco and M. Procesi, KAM for reversible derivative wave equations, Arch. Ration. Mech. Anal., 212 (2014), 905-955.
doi: 10.1007/s00205-014-0726-0.![]() ![]() ![]() |
[7] |
J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math., 148 (1998), 363-439.
doi: 10.2307/121001.![]() ![]() ![]() |
[8] |
L. Chierchia and J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Comm. Math. Phys., 211 (2000), 497-525.
doi: 10.1007/s002200050824.![]() ![]() ![]() |
[9] |
M. Daniel and E. Gutkin, The dynamics of generalized Heisenberg ferromagnetic spin chain, Chaos, 5 (1995), 439-442.
doi: 10.1063/1.166114.![]() ![]() ![]() |
[10] |
L. Eliasson, B. Grébert and S. Kuksin, KAM for the nonlinear beam equation, Geom. Funct. Anal., 26 (2016), 1588-1715.
doi: 10.1007/s00039-016-0390-7.![]() ![]() ![]() |
[11] |
L. Eliasson and S. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math., 172 (2010), 371-435.
doi: 10.4007/annals.2010.172.371.![]() ![]() ![]() |
[12] |
R. Feola, F. Giuliani and M. Procesi, Reducible KAM tori for the Degasperis-Procesi equation, Comm. Math. Phys., 377 (2020), 1681-1759.
doi: 10.1007/s00220-020-03788-z.![]() ![]() ![]() |
[13] |
M. Gao and J. Liu, Invariant Cantor manifolds of quasi-periodic solutions for the derivative nonlinear Schrödinger equation, J. Differential Equations, 267 (2019), 1322-1375.
doi: 10.1016/j.jde.2019.02.010.![]() ![]() ![]() |
[14] |
J. Geng and J. Wu, Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations, J. Math. Phys., 53 (2012), 102702, 27 pp.
doi: 10.1063/1.4754822.![]() ![]() ![]() |
[15] |
J. Geng, X. Xu and J. You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math., 226 (2011), 5361-5402.
doi: 10.1016/j.aim.2011.01.013.![]() ![]() ![]() |
[16] |
J. Geng and Y. Yi, Quasi-periodic solutions in a nonlinear Schrödinger equation, J. Differential Equations, 233 (2007), 512-542.
doi: 10.1016/j.jde.2006.07.027.![]() ![]() ![]() |
[17] |
J. Geng and J. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys., 262 (2006), 343-372.
doi: 10.1007/s00220-005-1497-0.![]() ![]() ![]() |
[18] |
T. Kappeler and J. Pöschel, KdV & KAM, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-662-08054-2.![]() ![]() ![]() |
[19] |
S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math., 33 (1980), 241-263.
doi: 10.1002/cpa.3160330304.![]() ![]() ![]() |
[20] |
S. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funktsional. Anal. i Prilozhen., 21 (1987), 22-37.
![]() ![]() |
[21] |
S. Kuksin, On small-denominators equations with large variable coefficients, Z. Angew. Math. Phys., 48 (1997), 262-271.
doi: 10.1007/PL00001476.![]() ![]() ![]() |
[22] |
S. Kuksin, A KAM-theorem for equations of the Korteweg-de Vries type, Rev. Math. Math. Phys., 10 (1998), ii+64 pp.
![]() ![]() |
[23] |
S. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math., 143 (1996), 149-179.
doi: 10.2307/2118656.![]() ![]() ![]() |
[24] |
P. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613.
doi: 10.1063/1.1704154.![]() ![]() ![]() |
[25] |
J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient, Comm. Pure Appl. Math., 63 (2010), 1145-1172.
doi: 10.1002/cpa.20314.![]() ![]() ![]() |
[26] |
J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Comm. Math. Phys., 307 (2011), 629-673.
doi: 10.1007/s00220-011-1353-3.![]() ![]() ![]() |
[27] |
J. Liu and X. Yuan, KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions, J. Differential Equations, 256 (2014), 1627-1652.
doi: 10.1016/j.jde.2013.11.007.![]() ![]() ![]() |
[28] |
Z. Lou and J. Si, Quasi-periodic solutions for the reversible derivative nonlinear Schrödinger equations with periodic boundary conditions, J. Dynam. Differential Equations, 29 (2017), 1031-1069.
doi: 10.1007/s10884-015-9481-7.![]() ![]() ![]() |
[29] |
Z. Lou and J. Si, Periodic and quasi-periodic solutions for reversible unbounded perturbations of linear Schrödinger equations, J. Dynam. Differential Equations, 32 (2020), 117-161.
doi: 10.1007/s10884-018-9722-7.![]() ![]() ![]() |
[30] |
L. Mi and W. Cui, Invariant tori for the Schrödinger equation in the Heisenberg ferromagnetic chain, Appl. Anal., 98 (2019), 2440-2453.
doi: 10.1080/00036811.2018.1460817.![]() ![]() ![]() |
[31] |
C. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Comm. Math. Phys., 127 (1990), 479-528.
doi: 10.1007/BF02104499.![]() ![]() ![]() |
[32] |
Y. Wu and X. Yuan, A KAM theorem for the Hamiltonian with finite zero normal frequencies and its applications (in memory of Professor Walter Craig), J. Dynam. Differential Equations, 33 (2021), 1427-1474.
doi: 10.1007/s10884-021-09972-6.![]() ![]() ![]() |
[33] |
X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations, J. Differential Equations, 230 (2006), 213-274.
doi: 10.1016/j.jde.2005.12.012.![]() ![]() ![]() |
[34] |
J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1189-1228.
doi: 10.1088/0951-7715/24/4/010.![]() ![]() ![]() |