In this paper, we classify the positive solutions to the following integral system
where
$ \sum\limits^k_{j = 1}\frac{1}{p_j+1} = \sum\limits_{1\leq i<j\leq k}\frac{N-h_{ij}}{N}, $
and show the nonexistence of positive solutions for
$ \sum\limits^k_{j = 1}\frac{1}{p_j+1}>\sum\limits_{1\leq i<j\leq k}\frac{N-h_{ij}}{N}. $
Citation: |
[1] |
W. Beckner, Geometric inequalities in Fourier analysis, Essays on Fourier Analysis in Honor of Elias M. Stein, Princeton Math. Ser., Princeton Univ. Press, Princeton, NJ, 42 (1995), 36-68.
![]() ![]() |
[2] |
W. Beckner, Functionals for multilinear fractional embedding, Acta Math. Sin. (Engl. Ser.), 31 (2015), 1-28.
doi: 10.1007/s10114-015-4321-6.![]() ![]() ![]() |
[3] |
W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. of Math., 138 (1993), 213-242.
doi: 10.2307/2946638.![]() ![]() ![]() |
[4] |
G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systemsand related Liouville theorems, Milan J. Math., 76 (2008), 27-67.
doi: 10.1007/s00032-008-0090-3.![]() ![]() ![]() |
[5] |
L. Chen, Z. Liu, G. Lu and C. Tao, Stein-Weiss inequalities with the fractional Poisson kernel, Rev. Mat. Iberoam., 36 (2020), 1289-1308.
doi: 10.4171/rmi/1167.![]() ![]() ![]() |
[6] |
L. Chen, Z. Liu, G. Lu and C. Tao, Reverse Stein-Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc., 370 (2018), 8429-8450.
doi: 10.1090/tran/7273.![]() ![]() ![]() |
[7] |
L. Chen, G. Lu and C. Tao, Reverse Stein-Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud., 19 (2019), 475-494.
doi: 10.1515/ans-2018-2038.![]() ![]() ![]() |
[8] |
L. Chen, G. Lu and C. Tao, Hardy-Littlewood-Sobolev inequalities with the fractional Poisson kernel and their applications in PDEs, Acta Math. Sin. (Engl. Ser.), 35 (2019), 853-875.
doi: 10.1007/s10114-019-8417-2.![]() ![]() ![]() |
[9] |
L. Chen, G. Lu and C. Tao, Existence of extremal functions for the Stein-Weiss inequalities on the Heisenberg group, J. Funct. Anal., 277 (2019), 1112-1138.
doi: 10.1016/j.jfa.2019.01.002.![]() ![]() ![]() |
[10] |
S. Chen, A new family of sharp conformally invariant integral inequalities, Int. Math. Res. Not. IMRN, (2014), 1205–1220.
doi: 10.1093/imrn/rns248.![]() ![]() ![]() |
[11] |
W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.
doi: 10.3934/dcds.2009.24.1167.![]() ![]() ![]() |
[12] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[13] |
W. Chen, C. Li and B. Ou, Classiffication of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.
doi: 10.1081/PDE-200044445.![]() ![]() ![]() |
[14] |
M. Christ, On the restriction of the Fourier transform to curves: Endpoint results and the degenerate case, Trans. Amer. Math. Soc., 287 (1985), 223-238.
doi: 10.1090/S0002-9947-1985-0766216-6.![]() ![]() ![]() |
[15] |
M. Christ, Estimates for the $k$-plane transform, Indiana Univ. Math. J., 33 (1984), 891-910.
doi: 10.1512/iumj.1984.33.33048.![]() ![]() ![]() |
[16] |
J. Dou, Weighted Hardy-Littlewood-Sobolev inequalities on the upper half space, Comm. Cont. Math., 18 (2016), 1550067, 20 pp.
doi: 10.1142/S0219199715500674.![]() ![]() ![]() |
[17] |
J. Dou, Q. Guo and M. Zhu, Subcritical approach to sharp Hardy-Littlewood-Sobolev type inequalities on the upper half space, Adv. Math., 312 (2017), 1-45.
doi: 10.1016/j.aim.2017.07.009.![]() ![]() ![]() |
[18] |
J. Dou, Q. Guo and M. Zhu, Negative power nonlinear integral equations on bounded domains, J. Diff. Eqs., 269 (2020), 10527-10557.
doi: 10.1016/j.jde.2020.07.021.![]() ![]() ![]() |
[19] |
J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not. IMRN, (2015), 651–687.
doi: 10.1093/imrn/rnt213.![]() ![]() ![]() |
[20] |
J. Dou and M. Zhu, Reversed Hardy-Littewood-Sobolev inequality, Int. Math. Res. Not. IMRN, (2015), 9696–9726.
doi: 10.1093/imrn/rnu241.![]() ![]() ![]() |
[21] |
J. Dou and M. Zhu, Nonlinear integral equations on bounded domains, J. Funct. Anal., 277 (2019), 111-134.
doi: 10.1016/j.jfa.2018.05.020.![]() ![]() ![]() |
[22] |
S. W. Drury, $L^p$ estimates for the $X$-ray transform, Illinois J. Math., 27 (1983), 125-129.
![]() ![]() |
[23] |
R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.
doi: 10.1007/s00526-009-0302-x.![]() ![]() ![]() |
[24] |
R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math., 176 (2012), 349-381.
doi: 10.4007/annals.2012.176.1.6.![]() ![]() ![]() |
[25] |
R. L. Frank and E. H. Lieb, A New, Rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Spectral Theory, Function Spaces and Inequalities, Oper. Theory Adv. Appl., Birkhäuser/Springer Basel AG, Basel, 219 (2011), 55-67.
doi: 10.1007/978-3-0348-0263-5_4.![]() ![]() ![]() |
[26] |
M. Gluck, Subcritical approach to conformally invariant extension operators on the upper half space, J. Funct. Anal., 278 (2020), 108082, 46 pp.
doi: 10.1016/j.jfa.2018.08.012.![]() ![]() ![]() |
[27] |
M. Gluck and M. Zhu, An extension operator on bounded domains and applications, Calc. Var. PDE, 58 (2019), Paper No. 79, 27 pp.
doi: 10.1007/s00526-019-1513-4.![]() ![]() ![]() |
[28] |
L. Grafakos and C. Morpurgo, A Selberg integral formula and applications, Pacific J. Math., 191 (1999), 85-94.
doi: 10.2140/pjm.1999.191.85.![]() ![]() ![]() |
[29] |
L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1976), 1061-1083.
doi: 10.2307/2373688.![]() ![]() ![]() |
[30] |
Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications, J. Diff. Eqs., 260 (2016), 1-25.
doi: 10.1016/j.jde.2015.06.032.![]() ![]() ![]() |
[31] |
F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.
doi: 10.4310/MRL.2007.v14.n3.a2.![]() ![]() ![]() |
[32] |
F. Hang, X. Wang and X. Yan, Sharp integral inequalities for harmonic functions, Comm. Pure Appl. Math., 61 (2008), 54-95.
doi: 10.1002/cpa.20193.![]() ![]() ![]() |
[33] |
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Zeitschr., 27 (1928), 565-606.
doi: 10.1007/BF01171116.![]() ![]() ![]() |
[34] |
G. H. Hardy and J. E. Littlewood, On certain inequalities connected with the calculus of variations, J. London Math. Soc., 5 (1930), 34-39.
doi: 10.1112/jlms/s1-5.1.34.![]() ![]() ![]() |
[35] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.
doi: 10.4171/jems/6.![]() ![]() ![]() |
[36] |
Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.
doi: 10.1007/BF02786551.![]() ![]() ![]() |
[37] |
Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.
doi: 10.1215/S0012-7094-95-08016-8.![]() ![]() ![]() |
[38] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[39] |
Q. N. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on $\mathbb{R}^n$, Israel J. Math., 220 (2017), 189-223.
doi: 10.1007/s11856-017-1515-x.![]() ![]() ![]() |
[40] |
Q. N. Ngô and V. H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space $\mathbb{R}^n_+$, Int. Math. Res. Not. IMRN, (2017), 6187–6230.
doi: 10.1093/imrn/rnw108.![]() ![]() ![]() |
[41] |
F. Pezzolo, On some multilinear type integral systems, Nonl. Anal., 198 (2020), 111890, 23 pp.
doi: 10.1016/j.na.2020.111890.![]() ![]() ![]() |
[42] |
S. L. Sobolev, On a theorem of functional analysis, A. M. S. Transl. Ser. 2, 34 (1963), 39-68.
![]() |
[43] |
M. Zhu, Prescribing integral curvature equation, Diff. Inte. Eqs., 29 (2016), 889-904.
![]() ![]() |