October  2022, 42(10): 4787-4822. doi: 10.3934/dcds.2022072

Topological characterizations of Morse-Smale flows on surfaces and generic non-Morse-Smale flows

1. 

Moscow State University, Faculty of Mechanics and Mathematics, Russia

2. 

Moscow Center for Fundamental and Applied Mathematics, Russia

3. 

Applied Mathematics and Physics Division, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan

*Corresponding author: Tomoo Yokoyama

Received  January 2022 Revised  April 2022 Published  October 2022 Early access  May 2022

Fund Project: VK is partially supported by Russian Science Foundation 21-11-00355 project. TY is partially supported by JSPS Kakenhi Grant Number 20K03583

It is known that $ C^r $ Morse-Smale vector fields form an open dense subset in the space of vector fields on orientable closed surfaces and are structurally stable for any $ r \in \mathbb{Z}_{\geq 1} $. In particular, $ C^r $ Morse vector fields (i.e. Morse-Smale vector fields without limit cycles) form an open dense subset in the space of $ C^r $ gradient vector fields on orientable closed surfaces and are structurally stable. Therefore generic time evaluations of gradient flows on orientable closed surfaces (e.g. solutions of differential equations) are described by alternating sequences of Morse flows and instantaneous non-Morse gradient flows. To illustrate the generic transitions (e.g. bifurcations of singular points, transitions via heteroclinic separatrices), we characterize and list all generic non-Morse gradient flows. To construct such characterizations, we characterize isolated singular points of gradient flows on surfaces. In fact, such a singular point is a non-trivial finitely sectored singular point without elliptic sectors. Moreover, considering Morse-Smale flows as "generic gradient flows with limit cycles", we characterize and list all generic non-Morse-Smale flows.

Citation: Vladislav Kibkalo, Tomoo Yokoyama. Topological characterizations of Morse-Smale flows on surfaces and generic non-Morse-Smale flows. Discrete and Continuous Dynamical Systems, 2022, 42 (10) : 4787-4822. doi: 10.3934/dcds.2022072
References:
[1]

A. A. Andronov and L. S. Pontryagin, Rough systems, Dokl. Akad. Nauk SSSR, 14 (1937), 247-250. 

[2]

S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153. American Mathematical Society, Providence, RI, 1996. doi: 10.1090/mmono/153.

[3]

C. Bonatti and R. Langevin, Difféomorphismes de Smale des Surfaces, Astérisque, 1998.

[4]

I. Bronstein and I. Nikolaev, Peixoto graphs of Morse-Smale foliations on surfaces, Topology Appl., 77 (1997), 19-36.  doi: 10.1016/S0166-8641(96)00101-0.

[5]

M. CoboC. Gutierrez and J. Llibre, Flows without wandering points on compact connected surfaces, Trans. Amer. Math. Soc., 362 (2010), 4569-4580.  doi: 10.1090/S0002-9947-10-05113-5.

[6]

V. Z. GrinesE. Ya. GurevichE. V. Zhuzhoma and O. V. Pochinka, Classification of Morse-Smale systems and topological structure of the underlying manifolds, Russian Mathematical Surveys, 74 (2019), 37-110.  doi: 10.4213/rm9855.

[7]

C. Gutiérrez, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math. Soc., 241 (1978), 311-320.  doi: 10.1090/S0002-9947-1978-0492303-2.

[8]

C. Gutierrez and B. Pires, On Peixoto's conjecture for flows on non-orientable 2-manifolds, Proc. Amer. Math. Soc., 133 (2005), 1063-1074.  doi: 10.1090/S0002-9939-04-07687-7.

[9]

C. Gutierrez and B. Pires, On $C^r$-closing for flows on orientable and non-orientable 2-manifolds, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 553-576.  doi: 10.1007/s00574-009-0027-7.

[10]

S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega$-stability conjectures for flows, Ann. of Math., 145 (1997), 81-137.  doi: 10.2307/2951824.

[11]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part A, Foliations on Compact Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy, Second edition, Aspects of Mathematics, 1. Friedr. Vieweg & Sohn, Braunschweig, 1986. doi: 10.1007/978-3-322-90115-6.

[12]

V. KruglovD. Malyshev and O. Pochinka, Topological classification of $\Omega$-stable flows on surfaces by means of effectively distinguishable multigraphs, Discrete Contin. Dyn. Syst., 38 (2018), 4305-4327.  doi: 10.3934/dcds.2018188.

[13]

R. Labarca and M. J. Pacifico, Stability of Morse-Smale vector fields on manifolds with boundary, Topology, 29 (1990), 57-81.  doi: 10.1016/0040-9383(90)90025-F.

[14]

D. Malyshev, A. Morozov and O Pochinka, Combinatorial invariant for Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic, Chaos, 31 (2021), 023119, 17 pp. doi: 10.1063/5.0029352.

[15]

N. G. Markley, On the number of recurrent orbit closures, Proc. Amer. Math. Soc., 25 (1970), 413-416.  doi: 10.1090/S0002-9939-1970-0256375-0.

[16]

A. Morozov and O. Pochinka, Morse-Smale surfaced diffeomorphisms with orientable heteroclinic, J. Dyn. Control Syst., 26 (2020), 629-639.  doi: 10.1007/s10883-019-09469-y.

[17]

I. Nikolaev, Foliations on Surfaces, A Series of Modern Surveys in Mathematics, 41. Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-662-04524-4.

[18]

I. Nikolaev and E. Zhuzhoma, Flows on 2-Dimensional Manifolds: An Overview, Lecture Notes in Mathematics, 1705. Springer-Verlag, Berlin, 1999. doi: 10.1007/BFb0093599.

[19]

A. A. Oshemkov and V. V. Sharko, Classification of Morse-Smale flows on two-dimensional manifolds, Sbornik: Mathematics, 189 (1998), 1205-1250.  doi: 10.1070/SM1998v189n08ABEH000341.

[20]

J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1968), 385-404.  doi: 10.1016/0040-9383(69)90024-X.

[21]

J. Palis and S. Smale, Structural stability theorems, 1970 Global Analysis, Amer. Math. Soc., Providence, R.I., 14 (1968), 223-231. 

[22]

M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology, 1 (1962), 101-120.  doi: 10.1016/0040-9383(65)90018-2.

[23]

C. Pugh and M. Shub, The $\Omega$-stability theorem for flows, Invent. Math., 11 (1970), 150-158.  doi: 10.1007/BF01404608.

[24]

C. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021.  doi: 10.2307/2373414.

[25]

C. C. Pugh and C. Robinson, The $C^1$ closing lemma, including hamiltonians, Ergodic Theory and Dynamical Systems, 3 (1983), 261-313.  doi: 10.1017/S0143385700001978.

[26]

S. Smale, On gradient dynamical systems, Annals of Mathematics, 74 (1961), 199-206.  doi: 10.2307/1970311.

[27]

X. Wang, The C*-algebras of Morse-Smale flows on two-manifolds, Ergodic Theory Dynam. Systems, 10 (1990), 565-597.  doi: 10.1017/S0143385700005757.

[28]

T. Yokoyama, Decompositions of surface flows, (2017), arXiv preprint, arXiv: 1703.05501.

[29]

T. Yokoyama, Refinements of topological invariants of flows, Discrete Contin. Dyn. Syst., 42 (2022), 2295-2331.  doi: 10.3934/dcds.2021191.

show all references

References:
[1]

A. A. Andronov and L. S. Pontryagin, Rough systems, Dokl. Akad. Nauk SSSR, 14 (1937), 247-250. 

[2]

S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153. American Mathematical Society, Providence, RI, 1996. doi: 10.1090/mmono/153.

[3]

C. Bonatti and R. Langevin, Difféomorphismes de Smale des Surfaces, Astérisque, 1998.

[4]

I. Bronstein and I. Nikolaev, Peixoto graphs of Morse-Smale foliations on surfaces, Topology Appl., 77 (1997), 19-36.  doi: 10.1016/S0166-8641(96)00101-0.

[5]

M. CoboC. Gutierrez and J. Llibre, Flows without wandering points on compact connected surfaces, Trans. Amer. Math. Soc., 362 (2010), 4569-4580.  doi: 10.1090/S0002-9947-10-05113-5.

[6]

V. Z. GrinesE. Ya. GurevichE. V. Zhuzhoma and O. V. Pochinka, Classification of Morse-Smale systems and topological structure of the underlying manifolds, Russian Mathematical Surveys, 74 (2019), 37-110.  doi: 10.4213/rm9855.

[7]

C. Gutiérrez, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math. Soc., 241 (1978), 311-320.  doi: 10.1090/S0002-9947-1978-0492303-2.

[8]

C. Gutierrez and B. Pires, On Peixoto's conjecture for flows on non-orientable 2-manifolds, Proc. Amer. Math. Soc., 133 (2005), 1063-1074.  doi: 10.1090/S0002-9939-04-07687-7.

[9]

C. Gutierrez and B. Pires, On $C^r$-closing for flows on orientable and non-orientable 2-manifolds, Bull. Braz. Math. Soc. (N.S.), 40 (2009), 553-576.  doi: 10.1007/s00574-009-0027-7.

[10]

S. Hayashi, Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega$-stability conjectures for flows, Ann. of Math., 145 (1997), 81-137.  doi: 10.2307/2951824.

[11]

G. Hector and U. Hirsch, Introduction to the Geometry of Foliations. Part A, Foliations on Compact Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy, Second edition, Aspects of Mathematics, 1. Friedr. Vieweg & Sohn, Braunschweig, 1986. doi: 10.1007/978-3-322-90115-6.

[12]

V. KruglovD. Malyshev and O. Pochinka, Topological classification of $\Omega$-stable flows on surfaces by means of effectively distinguishable multigraphs, Discrete Contin. Dyn. Syst., 38 (2018), 4305-4327.  doi: 10.3934/dcds.2018188.

[13]

R. Labarca and M. J. Pacifico, Stability of Morse-Smale vector fields on manifolds with boundary, Topology, 29 (1990), 57-81.  doi: 10.1016/0040-9383(90)90025-F.

[14]

D. Malyshev, A. Morozov and O Pochinka, Combinatorial invariant for Morse-Smale diffeomorphisms on surfaces with orientable heteroclinic, Chaos, 31 (2021), 023119, 17 pp. doi: 10.1063/5.0029352.

[15]

N. G. Markley, On the number of recurrent orbit closures, Proc. Amer. Math. Soc., 25 (1970), 413-416.  doi: 10.1090/S0002-9939-1970-0256375-0.

[16]

A. Morozov and O. Pochinka, Morse-Smale surfaced diffeomorphisms with orientable heteroclinic, J. Dyn. Control Syst., 26 (2020), 629-639.  doi: 10.1007/s10883-019-09469-y.

[17]

I. Nikolaev, Foliations on Surfaces, A Series of Modern Surveys in Mathematics, 41. Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-662-04524-4.

[18]

I. Nikolaev and E. Zhuzhoma, Flows on 2-Dimensional Manifolds: An Overview, Lecture Notes in Mathematics, 1705. Springer-Verlag, Berlin, 1999. doi: 10.1007/BFb0093599.

[19]

A. A. Oshemkov and V. V. Sharko, Classification of Morse-Smale flows on two-dimensional manifolds, Sbornik: Mathematics, 189 (1998), 1205-1250.  doi: 10.1070/SM1998v189n08ABEH000341.

[20]

J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1968), 385-404.  doi: 10.1016/0040-9383(69)90024-X.

[21]

J. Palis and S. Smale, Structural stability theorems, 1970 Global Analysis, Amer. Math. Soc., Providence, R.I., 14 (1968), 223-231. 

[22]

M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology, 1 (1962), 101-120.  doi: 10.1016/0040-9383(65)90018-2.

[23]

C. Pugh and M. Shub, The $\Omega$-stability theorem for flows, Invent. Math., 11 (1970), 150-158.  doi: 10.1007/BF01404608.

[24]

C. C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021.  doi: 10.2307/2373414.

[25]

C. C. Pugh and C. Robinson, The $C^1$ closing lemma, including hamiltonians, Ergodic Theory and Dynamical Systems, 3 (1983), 261-313.  doi: 10.1017/S0143385700001978.

[26]

S. Smale, On gradient dynamical systems, Annals of Mathematics, 74 (1961), 199-206.  doi: 10.2307/1970311.

[27]

X. Wang, The C*-algebras of Morse-Smale flows on two-manifolds, Ergodic Theory Dynam. Systems, 10 (1990), 565-597.  doi: 10.1017/S0143385700005757.

[28]

T. Yokoyama, Decompositions of surface flows, (2017), arXiv preprint, arXiv: 1703.05501.

[29]

T. Yokoyama, Refinements of topological invariants of flows, Discrete Contin. Dyn. Syst., 42 (2022), 2295-2331.  doi: 10.3934/dcds.2021191.

Figure 1.  Two parabolic sectors $ P^- $ and $ P^+ $, two hyperbolic sectors $ H^- $ and $ H^+ $ with clockwise and anti-clockwise orbit directions, and two elliptic sectors $ E^+ $ and $ E^- $ with clockwise and anti-clockwise orbit directions respectively
Figure 2.  Multi-saddles
Figure 3.  A saddle, two $ \partial $-saddles, a sink, a $ \partial $-sink, a source, a $ \partial $-source, and a center
Figure 4.  The resulting flow on the double of the Möbius band is a non-gradient Morse-like flow without limit circuits on a Klein bottle
Figure 5.  The figure on the left is an orientable holonomy from $ I $ to $ J $ along a non-trivial circuit $ \gamma $, and the figure on the right is a non-orientable holonomy from $ I $ to $ J $ along a non-trivial circuit $ \gamma $
Figure 6.  Canonical quotient mappings induced by the metric completion and the collapse for the case that $ \Gamma $ consists of finitely many orbits
Figure 7.  Fake parabolic separatrices
Figure 8.  Left, all heteroclinic separatrices between a saddle/$ \partial $-saddle $ h_o $ and a saddle/$ \partial $-saddle $ h_i $ which are not contained in limit circuits of $ h $-unstable flows; right, all pinching structures in $ p $-unstable flows
Figure 9.  Left, all homoclinic separatrices of saddles in $ h $-unstable flows; right, all heteroclinic separatrices of $ \partial $-saddles in limit circuits of $ h $-unstable flows
Figure 10.  A pair annihilation of an attracting limit cycle and a repelling limit cycle
Figure 11.  An open flow box $ U $ and a decomposition of its boundary
Figure 12.  A perturbation of $ \mu \subset \gamma $
Figure 13.  Deformations of sectors to eliminate inner tangencies
Figure 14.  Two successive tangencies on $ \mu $
Figure 15.  All flows in the figure are flows on a Möbius band with a $ \partial $-sink, a $ \partial $-source, two $ \partial $-saddles, and non-recurrent orbits. The flow in the figure on the left is not Morse-Smale but regular Morse-like and quasi-Morse-Smale (see definition in §5) and has a non-trivial circuit with non-limit non-orientable holonomy. The flow in the second figure from the left is Morse. The flows in the second (resp. first) figures from the right are Morse-Smale and have a repelling (resp. attracting) limit cycle
Figure 16.  Left, an orientable holonomy along a non-trivial circuit which is the closure of some homoclinic saddle separatrix $ \gamma $; right, a non-orientable holonomy along a non-trivial circuit which is the closure of some homoclinic saddle separatrix $ \gamma $
Figure 17.  A loop which consists of finitely many non-degenerate orbit arcs and transverse arcs and its perturbed loop which consists of finitely many non-degenerate orbit arcs
Figure 18.  Replacement of an orbit arc into a pair of two transverse arcs
Figure 19.  Annihilation of a multi-saddle separatrix and creation of a topological limit cycle
Figure 20.  Annihilation of a multi-saddle separatrix and creation of a topological limit cycle
Figure 21.  Splittings of multi-saddles creating multi-saddle separatrices
[1]

Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073

[2]

Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155

[3]

Bin Yu. Behavior $0$ nonsingular Morse Smale flows on $S^3$. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 509-540. doi: 10.3934/dcds.2016.36.509

[4]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1385-1412. doi: 10.3934/cpaa.2021025

[5]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1671-1694. doi: 10.3934/dcdsb.2021106

[6]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[7]

Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure and Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507

[8]

Hyunjin Ahn. Uniform stability of the Cucker–Smale and thermodynamic Cucker–Smale ensembles with singular kernels. Networks and Heterogeneous Media, 2022, 17 (5) : 753-782. doi: 10.3934/nhm.2022025

[9]

Konstantin Mischaikow, Marian Mrozek, Frank Weilandt. Discretization strategies for computing Conley indices and Morse decompositions of flows. Journal of Computational Dynamics, 2016, 3 (1) : 1-16. doi: 10.3934/jcd.2016001

[10]

Chun-Hsiung Hsia, Tian Ma, Shouhong Wang. Rotating Boussinesq equations: Dynamic stability and transitions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 99-130. doi: 10.3934/dcds.2010.28.99

[11]

Tian Ma, Shouhong Wang. Tropical atmospheric circulations: Dynamic stability and transitions. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1399-1417. doi: 10.3934/dcds.2010.26.1399

[12]

Yiqiu Mao, Dongming Yan, ChunHsien Lu. Dynamic transitions and stability for the acetabularia whorl formation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5989-6004. doi: 10.3934/dcdsb.2019117

[13]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[14]

L. Aguirre, P. Seibert. Types of change of stability and corresponding types of bifurcations. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 741-752. doi: 10.3934/dcds.1999.5.741

[15]

Mary Ballyk, Ross Staffeldt, Ibrahim Jawarneh. A nutrient-prey-predator model: Stability and bifurcations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2975-3004. doi: 10.3934/dcdss.2020192

[16]

Denis G. Gaidashev. Renormalization of isoenergetically degenerate hamiltonian flows and associated bifurcations of invariant tori. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 63-102. doi: 10.3934/dcds.2005.13.63

[17]

Jan Prüss, Yoshihiro Shibata, Senjo Shimizu, Gieri Simonett. On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities. Evolution Equations and Control Theory, 2012, 1 (1) : 171-194. doi: 10.3934/eect.2012.1.171

[18]

Bin Yu. Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1277-1290. doi: 10.3934/dcds.2011.29.1277

[19]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[20]

Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (110)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]