\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Large time behavior for a nonlocal nonlinear gradient flow

  • *Corresponding author: Erik Lindgren

    *Corresponding author: Erik Lindgren

In honour of Juan Luis Vázquez's 75th birthday

Erik Lindgren was supported by the Swedish Research Council, 2017-03736

Abstract Full Text(HTML) Related Papers Cited by
  • We study the large time behavior of the nonlinear and nonlocal equation

    $ v_t+(- \Delta_p)^sv = f \, , $

    where $ p\in (1, 2)\cup (2, \infty) $, $ s\in (0, 1) $ and

    $ (- \Delta_p)^s v\, (x, t) = 2 \, {\rm{P.V.}} \int_{ \mathbb{R}^n}\frac{|v(x, t)-v(x+y, t)|^{p-2}(v(x, t)-v(x+y, t))}{|y|^{n+sp}}\, dy. $

    This equation arises as a gradient flow in fractional Sobolev spaces. We obtain sharp decay estimates as $ t\to\infty $. The proofs are based on an iteration method in the spirit of J. Moser previously used by P. Juutinen and P. Lindqvist.

    Mathematics Subject Classification: Primary: 35K55, 35K65, 35K67, 35R11, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] B. AbdellaouiA. AttarR. Bentifour and I. Peral, On fractional p-Laplacian parabolic problem with general data, Ann. Mat. Pura. Appl., 197 (2018), 329-356.  doi: 10.1007/s10231-017-0682-z.
    [2] A. Banerjee, P. Garain and J. Kinnunen, Some local properties of subsolutons and supersolutions for a doubly nonlinear nonlocal parabolic p-laplace equation, preprint, 2020, arXiv: 2010.05727.
    [3] A. Banerjee, P. Garain and J. Kinnunen, Lower semicontinuity and pointwise behavior of supersolutions for some doubly nonlinear nonlocal parabolic p-laplace equations, Communications in Contemporary Mathematics, preprint, 2021, arXiv: 2101.10042. doi: 10.1142/S0219199722500328.
    [4] L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional $p$-Laplace equation in the superquadratic case, Adv. Math., 304 (2017), 300-354.  doi: 10.1016/j.aim.2016.03.039.
    [5] L. BrascoE. Lindgre and A. Schikorra, Higher Hölder regularity for the fractional $p$-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.  doi: 10.1016/j.aim.2018.09.009.
    [6] L. BrascoE Lindgren and M. Strömqvist, Continuity of solutions to a nonlinear fractional diffusion equation, J. Evol. Equ., 21 (2021), 4319-4381.  doi: 10.1007/s00028-021-00721-2.
    [7] L. Bungert and M. Burger, Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type, J. Evol. Equ., 20 (2020), 1061-1092.  doi: 10.1007/s00028-019-00545-1.
    [8] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.
    [9] M. Ding, C. Zhang and S. Zhou, Local boundedness and Hölder continuity for the parabolic fractional $p$-Laplace equations, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 38, 45 pp. doi: 10.1007/s00526-020-01870-x.
    [10] J. Giacomoni and S. Tiwari, Existence and global behavior of solutions to fractional $p$-Laplacian parabolic problems, Electron. J. Differential Equations, 2018 (2018), Paper No. 44, 20 pp.
    [11] R. Hynd and E. Lindgren, Hölder estimates and large time behavior for a nonlocal doubly nonlinear evolution, Anal. PDE, 9 (2016), 1447-1482.  doi: 10.2140/apde.2016.9.1447.
    [12] R. Hynd and E. Lindgren, Large time behavior of solutions of Trudinger's equation, J. Differential Equations, 274 (2021), 188-230.  doi: 10.1016/j.jde.2020.11.050.
    [13] A. IannizzottoS. LiuK. Perera and M. Squassina, Existence results for fractional $p$-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101-125.  doi: 10.1515/acv-2014-0024.
    [14] H. Ishii and G. Nakamura, A class of integral equations and approximation of $p$-Laplace equations, Calc. Var. Partial Differential Equations, 37 (2010), 485-522.  doi: 10.1007/s00526-009-0274-x.
    [15] P. Juutinen and P. Lindqvist, Pointwise decay for the solutions of degenerate and singular parabolic equations, Adv. Differential Equations, 14 (2009), 663-684. 
    [16] J. KorvenpääT. Kuusi and E. Lindgren, Equivalence of solutions to fractional $p$-Laplace type equations, J. Math. Pures Appl., 132 (2019), 1-26.  doi: 10.1016/j.matpur.2017.10.004.
    [17] E. Lindgren, Hölder estimates for viscosity solutions of equations of fractional $p$-Laplace type, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 55, 18 pp. doi: 10.1007/s00030-016-0406-x.
    [18] J. M. MazónJ. D. Rossi and J. Toledo, Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.  doi: 10.1016/j.matpur.2016.02.004.
    [19] V. Maz'ya and T. Shaposhnikova, On the bourgain, brezis, and mironescu theorem concerning limiting embeddings of fractional sobolev spaces, J. Func. Anal., 195 (2002), 230-238.  doi: 10.1006/jfan.2002.3955.
    [20] D. Puhst, On the evolutionary fractional $p$-Laplacian, Appl. Math. Res. Express. AMRX, 2015 (2015), 253-273.  doi: 10.1093/amrx/abv003.
    [21] M. Strömqvist, Harnack's inequality for parabolic nonlocal equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1709-1745.  doi: 10.1016/j.anihpc.2019.03.003.
    [22] M. Strömqvist, Local boundedness of solutions to non-local parabolic equations modeled on the fractional $p$-Laplacian, J. Differential Equations, 266 (2019), 7948-7979.  doi: 10.1016/j.jde.2018.12.021.
    [23] J. L. Vázquez, The Dirichlet problem for the fractional $p$-Laplacian evolution equation, J. Differential Equations, 260 (2016), 6038-6056.  doi: 10.1016/j.jde.2015.12.033.
    [24] J. L. Vázquez, The evolution fractional $p$-Laplacian equation in $\Bbb R^N$. Fundamental solution and asymptotic behaviour, Nonlinear Anal., 199 (2020), 112034, 32 pp. doi: 10.1016/j.na.2020.112034.
    [25] J. L. Vázquez, The fractional $p$-Laplacian evolution equation in ${\Bbb R}^N$ in the sublinear case, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 140, 59 pp. doi: 10.1007/s00526-021-02005-6.
    [26] M. Warma, Local Lipschitz continuity of the inverse of the fractional $p$-Laplacian, Hölder type continuity and continuous dependence of solutions to associated parabolic equations on bounded domains, Nonlinear Anal., 135 (2016), 129-157.  doi: 10.1016/j.na.2016.01.022.
  • 加载中
SHARE

Article Metrics

HTML views(507) PDF downloads(281) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return