We study the large time behavior of the nonlinear and nonlocal equation
$ v_t+(- \Delta_p)^sv = f \, , $
where $ p\in (1, 2)\cup (2, \infty) $, $ s\in (0, 1) $ and
$ (- \Delta_p)^s v\, (x, t) = 2 \, {\rm{P.V.}} \int_{ \mathbb{R}^n}\frac{|v(x, t)-v(x+y, t)|^{p-2}(v(x, t)-v(x+y, t))}{|y|^{n+sp}}\, dy. $
This equation arises as a gradient flow in fractional Sobolev spaces. We obtain sharp decay estimates as $ t\to\infty $. The proofs are based on an iteration method in the spirit of J. Moser previously used by P. Juutinen and P. Lindqvist.
Citation: |
[1] |
B. Abdellaoui, A. Attar, R. Bentifour and I. Peral, On fractional p-Laplacian parabolic problem with general data, Ann. Mat. Pura. Appl., 197 (2018), 329-356.
doi: 10.1007/s10231-017-0682-z.![]() ![]() ![]() |
[2] |
A. Banerjee, P. Garain and J. Kinnunen, Some local properties of subsolutons and supersolutions for a doubly nonlinear nonlocal parabolic p-laplace equation, preprint, 2020, arXiv: 2010.05727.
![]() |
[3] |
A. Banerjee, P. Garain and J. Kinnunen, Lower semicontinuity and pointwise behavior of supersolutions for some doubly nonlinear nonlocal parabolic p-laplace equations, Communications in Contemporary Mathematics, preprint, 2021, arXiv: 2101.10042.
doi: 10.1142/S0219199722500328.![]() ![]() |
[4] |
L. Brasco and E. Lindgren, Higher Sobolev regularity for the fractional $p$-Laplace equation in the superquadratic case, Adv. Math., 304 (2017), 300-354.
doi: 10.1016/j.aim.2016.03.039.![]() ![]() ![]() |
[5] |
L. Brasco, E. Lindgre and A. Schikorra, Higher Hölder regularity for the fractional $p$-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782-846.
doi: 10.1016/j.aim.2018.09.009.![]() ![]() ![]() |
[6] |
L. Brasco, E Lindgren and M. Strömqvist, Continuity of solutions to a nonlinear fractional diffusion equation, J. Evol. Equ., 21 (2021), 4319-4381.
doi: 10.1007/s00028-021-00721-2.![]() ![]() ![]() |
[7] |
L. Bungert and M. Burger, Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type, J. Evol. Equ., 20 (2020), 1061-1092.
doi: 10.1007/s00028-019-00545-1.![]() ![]() ![]() |
[8] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2.![]() ![]() ![]() |
[9] |
M. Ding, C. Zhang and S. Zhou, Local boundedness and Hölder continuity for the parabolic fractional $p$-Laplace equations, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 38, 45 pp.
doi: 10.1007/s00526-020-01870-x.![]() ![]() ![]() |
[10] |
J. Giacomoni and S. Tiwari, Existence and global behavior of solutions to fractional $p$-Laplacian parabolic problems, Electron. J. Differential Equations, 2018 (2018), Paper No. 44, 20 pp.
![]() ![]() |
[11] |
R. Hynd and E. Lindgren, Hölder estimates and large time behavior for a nonlocal doubly nonlinear evolution, Anal. PDE, 9 (2016), 1447-1482.
doi: 10.2140/apde.2016.9.1447.![]() ![]() ![]() |
[12] |
R. Hynd and E. Lindgren, Large time behavior of solutions of Trudinger's equation, J. Differential Equations, 274 (2021), 188-230.
doi: 10.1016/j.jde.2020.11.050.![]() ![]() ![]() |
[13] |
A. Iannizzotto, S. Liu, K. Perera and M. Squassina, Existence results for fractional $p$-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101-125.
doi: 10.1515/acv-2014-0024.![]() ![]() ![]() |
[14] |
H. Ishii and G. Nakamura, A class of integral equations and approximation of $p$-Laplace equations, Calc. Var. Partial Differential Equations, 37 (2010), 485-522.
doi: 10.1007/s00526-009-0274-x.![]() ![]() ![]() |
[15] |
P. Juutinen and P. Lindqvist, Pointwise decay for the solutions of degenerate and singular parabolic equations, Adv. Differential Equations, 14 (2009), 663-684.
![]() ![]() |
[16] |
J. Korvenpää, T. Kuusi and E. Lindgren, Equivalence of solutions to fractional $p$-Laplace type equations, J. Math. Pures Appl., 132 (2019), 1-26.
doi: 10.1016/j.matpur.2017.10.004.![]() ![]() ![]() |
[17] |
E. Lindgren, Hölder estimates for viscosity solutions of equations of fractional $p$-Laplace type, NoDEA Nonlinear Differential Equations Appl., 23 (2016), Art. 55, 18 pp.
doi: 10.1007/s00030-016-0406-x.![]() ![]() ![]() |
[18] |
J. M. Mazón, J. D. Rossi and J. Toledo, Fractional $p$-Laplacian evolution equations, J. Math. Pures Appl., 105 (2016), 810-844.
doi: 10.1016/j.matpur.2016.02.004.![]() ![]() ![]() |
[19] |
V. Maz'ya and T. Shaposhnikova, On the bourgain, brezis, and mironescu theorem concerning limiting embeddings of fractional sobolev spaces, J. Func. Anal., 195 (2002), 230-238.
doi: 10.1006/jfan.2002.3955.![]() ![]() |
[20] |
D. Puhst, On the evolutionary fractional $p$-Laplacian, Appl. Math. Res. Express. AMRX, 2015 (2015), 253-273.
doi: 10.1093/amrx/abv003.![]() ![]() ![]() |
[21] |
M. Strömqvist, Harnack's inequality for parabolic nonlocal equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1709-1745.
doi: 10.1016/j.anihpc.2019.03.003.![]() ![]() ![]() |
[22] |
M. Strömqvist, Local boundedness of solutions to non-local parabolic equations modeled on the fractional $p$-Laplacian, J. Differential Equations, 266 (2019), 7948-7979.
doi: 10.1016/j.jde.2018.12.021.![]() ![]() ![]() |
[23] |
J. L. Vázquez, The Dirichlet problem for the fractional $p$-Laplacian evolution equation, J. Differential Equations, 260 (2016), 6038-6056.
doi: 10.1016/j.jde.2015.12.033.![]() ![]() ![]() |
[24] |
J. L. Vázquez, The evolution fractional $p$-Laplacian equation in $\Bbb R^N$. Fundamental solution and asymptotic behaviour, Nonlinear Anal., 199 (2020), 112034, 32 pp.
doi: 10.1016/j.na.2020.112034.![]() ![]() ![]() |
[25] |
J. L. Vázquez, The fractional $p$-Laplacian evolution equation in ${\Bbb R}^N$ in the sublinear case, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 140, 59 pp.
doi: 10.1007/s00526-021-02005-6.![]() ![]() ![]() |
[26] |
M. Warma, Local Lipschitz continuity of the inverse of the fractional $p$-Laplacian, Hölder type continuity and continuous dependence of solutions to associated parabolic equations on bounded domains, Nonlinear Anal., 135 (2016), 129-157.
doi: 10.1016/j.na.2016.01.022.![]() ![]() ![]() |