We consider the optimization problem of minimizing $ \int_{\mathbb{R}^n}|\nabla u|^2\,{\mathrm{d}}x $ with double obstacles $ \phi\leq u\leq\psi $ a.e. in $ D $ and a constraint on the volume of $ \{u>0\}\setminus\overline{D} $, where $ D\subset\mathbb{R}^n $ is a bounded domain. By studying a penalization problem that achieves the constrained volume for small values of penalization parameter, we prove that every minimizer is $ C^{1,1} $ locally in $ D $ and Lipschitz continuous in $ \mathbb{R}^n $ and that the free boundary $ \partial\{u>0\}\setminus\overline{D} $ is smooth. Moreover, when the boundary of $ D $ has a plane portion, we show that the minimizer is $ C^{1,\frac{1}{2}} $ up to the plane portion.
Citation: |
[1] |
N. Aguilera, H. W. Alt and L. A. Caffarelli, An optimization problem with volume constraint, SIAM J. Control Optim., 24 (1986), 191-198.
doi: 10.1137/0324011.![]() ![]() ![]() |
[2] |
N. E. Aguilera, L. A. Caffarelli and J. Spruck, An optimization problem in heat conduction, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14 (1987), 355-387.
![]() ![]() |
[3] |
H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.
![]() ![]() |
[4] |
L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume constrained variational problem, Arch. Ration. Mech. Anal., 149 (1999), 23-47.
doi: 10.1007/s002050050166.![]() ![]() ![]() |
[5] |
H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1973/74), 831-844.
doi: 10.1512/iumj.1974.23.23069.![]() ![]() ![]() |
[6] |
L. A. Caffarelli, Compactness methods in free boundary problems, Comm. Partial Differential Equations, 5 (1980), 427-448.
doi: 10.1080/0360530800882144.![]() ![]() ![]() |
[7] |
L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383-402.
doi: 10.1007/BF02498216.![]() ![]() ![]() |
[8] |
L. A. Caffarelli and D. Kinderlehrer, Potential methods in variational inequalities, J. Anal. Math., 37 (1980), 285-295.
doi: 10.1007/BF02797689.![]() ![]() ![]() |
[9] |
M. Chipot, Sur la régularité de la solution d'inéquations variationnelles elliptiques, C. R. Acad. Sci. Paris Sér., 288 (1979), 543-546.
![]() ![]() |
[10] |
H. J. Choe, Regularity for certain degenerate elliptic double obstacle problems, J. Math. Anal. Appl., 169 (1992), 111-126.
doi: 10.1016/0022-247X(92)90106-N.![]() ![]() ![]() |
[11] |
G. Dal Maso, U. Mosco and M. A. Vivaldi, A pointwise regularity theory for the two-obstacle problem, Acta Math., 163 (1989), 57-107.
doi: 10.1007/BF02392733.![]() ![]() ![]() |
[12] |
J. Fernández Bonder, S. Martínez and N. Wolanski, An optimization problem with volume constraint for a degenerate quasilinear operator, J. Differential Equations, 227 (2006), 80-101.
doi: 10.1016/j.jde.2006.03.006.![]() ![]() ![]() |
[13] |
J. Fernández Bonder, J. D. Rossi and N. Wolanski, Regularity of the free boundary in an optimization problem related to the best Sobolev trace constant, SIAM J. Control Optim., 44 (2005), 1612-1635.
doi: 10.1137/040613615.![]() ![]() ![]() |
[14] |
A. Figalli and J. Serra, On the fine structure of the free boundary for the classical obstacle problem, Invent. Math., 215 (2019), 311-366.
doi: 10.1007/s00222-018-0827-8.![]() ![]() ![]() |
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Equatios of Second Order, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2001.
![]() |
[16] |
C. Lederman, A free boundary problem with a volume penalization, Ann. Sc. Norm. Super. Pisa Cl. Sci., 23 (1996), 249-300.
![]() ![]() |
[17] |
G. P. Leonardi and P. Tilli, On a constrained variational problem in the vector-valued case, J. Math. Pures Appl., 85 (2006), 251-268.
doi: 10.1016/j.matpur.2005.07.004.![]() ![]() ![]() |
[18] |
G. M. Lieberman, Regularity of solutions to some degenerate double obstacle problems, Indiana Univ. Math. J., 40 (1991), 1009-1028.
doi: 10.1512/iumj.1991.40.40045.![]() ![]() ![]() |
[19] |
F. Lin, Lectures on elliptic free boundary problems, in Lectures on the Analysis of Nonlinear Partial Differential Equations, Part 4, Morningside Lect. Math. 4, International Press, Somerville, MA, 2016,115-193.
![]() ![]() |
[20] |
J. Mu and W. P. Ziemer, Smooth regularity of solutions of double obstacle problem involving degenerate elliptic equations, Comm. Partial Differential Equations, 16 (1991), 821-843.
doi: 10.1080/03605309108820780.![]() ![]() ![]() |
[21] |
A. Petrosyan and T. To, Optimal regularity in rooftop-like obstacle problem, Comm. Partial Differential Equations, 35 (2010), 1292-1325.
doi: 10.1080/03605302.2010.483265.![]() ![]() ![]() |
[22] |
O. Savin and H. Yu, On the fine regularity of the singular set in the nonlinear obstacle problem, Nonlinear Anal., 218 (2022), Paper No. 112770.
doi: 10.1016/j.na.2021.112770.![]() ![]() ![]() |
[23] |
O. Savin and H. Yu, Regularity of the singular set in the fully nonlinear obstacle problem, to appear, J. Eur. Math. Soc.
![]() |
[24] |
E. V. Teixeira, The nonlinear optimization problem in heat conduction, Calc. Var. Partial Differential Equations, 24 (2005), 21-46.
doi: 10.1007/s00526-004-0313-6.![]() ![]() ![]() |
[25] |
R. Teymurazyan and J. M. Urbano, A free boundary optimization problem for the $\infty$-Laplacian, J. Differential Equations, 263 (2017), 1140-1159.
doi: 10.1016/j.jde.2017.03.010.![]() ![]() ![]() |
[26] |
H. Yu, An optimization problem in heat conduction with minimal temperature constraint, interior heating and exterior insulation, Calc. Var. Partial Differential Equations, 55 (2016), Art. 130, 15 pp.
doi: 10.1007/s00526-016-1071-y.![]() ![]() ![]() |