On a smooth, closed Riemannian manifold, we study the question of proportionality of components, also called synchronization, of vector-valued solutions to nonlinear elliptic Schrödinger systems with constant coefficients. In particular, we obtain bifurcation results showing the existence of branches of non-synchronized solutions emanating from the constant solutions.
Citation: |
[1] |
N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661-2664.
![]() |
[2] |
T. Bartsch, N. Dancer and Z.-Q. Wang, A liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y.![]() ![]() ![]() |
[3] |
M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of emden equations, Invent. Math., 106 (1991), 489-539.
doi: 10.1007/BF01243922.![]() ![]() ![]() |
[4] |
W. Chen, J. Wei and S. Yan, Infinitely many solutions for the Schrödinger equations in $ \mathbb {R}^n$ with critical growth, J. Differential Equations, 252 (2012), 2425-2447.
doi: 10.1016/j.jde.2011.09.032.![]() ![]() ![]() |
[5] |
Y.-H. Chen and W. Zou, Vector solutions for two coupled Schrödinger equations on riemannian manifolds, J. Math. Phys., 60 (2019), 051502, 21 pp.
doi: 10.1063/1.5100021.![]() ![]() ![]() |
[6] |
M. Clapp and A. Pistoia, Existence and phase separation of entire solutions to a pure critical competitive elliptic system, Calc. Var. Partial Differential Equations, 57 (2018), Art. 23, 20 pp.
doi: 10.1007/s00526-017-1283-9.![]() ![]() ![]() |
[7] |
M. Clapp and A. Pistoia, Fully nontrivial solutions to elliptic systems with mixed couplings, Nonlinear Anal., 216 (2022), Art. 112694, 19 pp.
doi: 10.1016/j.na.2021.112694.![]() ![]() ![]() |
[8] |
M. Clapp, A. Pistoia and H. Tavares, Yamabe systems, optimal partitions, and nodal solutions to the yamabe equation, arXiv: 2106.00579.
![]() |
[9] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2.![]() ![]() ![]() |
[10] |
O. Druet and E. Hebey, Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium, Anal. PDE, 2 (2009), 305-359.
doi: 10.2140/apde.2009.2.305.![]() ![]() ![]() |
[11] |
O. Druet, E. Hebey and J. Vétois, Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., 258 (2010), 999-1059.
doi: 10.1016/j.jfa.2009.07.004.![]() ![]() ![]() |
[12] |
B. D. Esry, C. H. Greene, J. P. Burke and J. L. Bohn, Hartree-fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.
![]() |
[13] |
F. Gladiali, Separation of branches of $o(n-1)$-invariant solutions for a semilinear elliptic equation, J. Math. Anal. Appl., 453 (2017), 159-173.
doi: 10.1016/j.jmaa.2017.03.045.![]() ![]() ![]() |
[14] |
F. Gladiali, M. Grossi and C. Troestler, Entire radial and nonradial solutions for systems with critical growth, Calc. Var. Partial Differential Equations, 57 (2018), Art. 53, 26 pp.
doi: 10.1007/s00526-018-1340-z.![]() ![]() ![]() |
[15] |
F. Gladiali, M. Grossi and C. Troestler, A non-variational system involving the critical sobolev exponent. The radial case, J. Anal. Math., 138 (2019), 643-671.
doi: 10.1007/s11854-019-0040-8.![]() ![]() ![]() |
[16] |
Y. Guo, B. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in $ \mathbb {R}^3$, J. Differential Equations, 256 (2014), 3463-3495.
doi: 10.1016/j.jde.2014.02.007.![]() ![]() ![]() |
[17] |
Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ \mathbb {R}^n$, Comm. Partial Differential Equations, 33 (2008), 263-284.
doi: 10.1080/03605300701257476.![]() ![]() ![]() |
[18] |
E. Hebey and M. Vaugon, Meilleures constantes dans le théorème d'inclusion de sobolev et multiplicité pour les problèmes de niremberg et yamabe, Indiana Univ. Math. J., 41 (1992), 377-407.
doi: 10.1512/iumj.1992.41.41021.![]() ![]() ![]() |
[19] |
E. Hebey and J. Wei, Resonant states for the static Klein-Gordon-Maxwell-Proca system, Math. Res. Lett., 19 (2012), 953-967.
doi: 10.4310/MRL.2012.v19.n4.a18.![]() ![]() ![]() |
[20] |
T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations, Phys. Rev. Lett., 86 (2001), 5043-5046.
![]() |
[21] |
H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to Partial Differential Equations, Second edition, Applied Mathematical Sciences, 156. Springer, New York, 2012.
doi: 10.1007/978-1-4614-0502-3.![]() ![]() ![]() |
[22] |
C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049-1057.
doi: 10.1137/080712301.![]() ![]() ![]() |
[23] |
C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740.
doi: 10.1090/proc/13166.![]() ![]() ![]() |
[24] |
C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. Partial Differential Equations, 41 (2016), 1029-1039.
doi: 10.1080/03605302.2016.1190376.![]() ![]() ![]() |
[25] |
T.-C. Lin and J. Wei, Ground state of $n$ coupled nonlinear Schrödinger equations in $ \mathbb {R}^n$, $n\leq 3$, Comm. Math. Phys., 255 (2005), 629-653.
doi: 10.1007/s00220-005-1313-x.![]() ![]() ![]() |
[26] |
Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.
doi: 10.1007/s00220-008-0546-x.![]() ![]() ![]() |
[27] |
A. M. Micheletti, A. Pistoia and J. Vétois, Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds, Indiana Univ. Math. J., 58 (2009), 1719-1746.
doi: 10.1512/iumj.2009.58.3633.![]() ![]() ![]() |
[28] |
A. Montaru, B. Sirakov and P. Souplet, Proportionality of components, liouville theorems and a priori estimates for noncooperative elliptic systems, Arch. Ration. Mech. Anal., 213 (2014), 129-169.
doi: 10.1007/s00205-013-0719-4.![]() ![]() ![]() |
[29] |
S. Peng, Y.-F. Peng and Z.-Q. Wang, On elliptic systems with sobolev critical growth, Calc. Var. Partial Differential Equations, 55 (2016), Art. 142, 30 pp.
doi: 10.1007/s00526-016-1091-7.![]() ![]() ![]() |
[30] |
P. Quittner and P. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal., 44 (2012), 2545-2559.
doi: 10.1137/11085428X.![]() ![]() ![]() |
[31] |
B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $ \mathbb {R}^n$, Comm. Math. Phys., 271 (2007), 199-221.
doi: 10.1007/s00220-006-0179-x.![]() ![]() ![]() |
[32] |
N. Soave and A. Zilio, Uniform bounds for strongly competing systems: The optimal lipschitz case, Arch. Ration. Mech. Anal., 218 (2015), 647-697.
doi: 10.1007/s00205-015-0867-9.![]() ![]() ![]() |
[33] |
S. Terracini and G. Verzini, Multipulse phases in $k$-mixtures of bose-einstein condensates, Arch. Ration. Mech. Anal., 194 (2009), 717-741.
doi: 10.1007/s00205-008-0172-y.![]() ![]() ![]() |
[34] |
E. Timmermans, Phase separation of bose-einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721.
![]() |
[35] |
J. Vétois and S. Wang, Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four, Adv. Nonlinear Anal., 8 (2019), 715-724.
doi: 10.1515/anona-2017-0085.![]() ![]() ![]() |
[36] |
J. Wei and Y. Wu, Ground states of nonlinear Schrödinger systems with mixed couplings, J. Math. Pures Appl., 141 (2020), 50-88.
doi: 10.1016/j.matpur.2020.07.012.![]() ![]() ![]() |
[37] |
D. Westreich, Bifurcation at eigenvalues of odd multiplicity, Proc. Amer. Math. Soc., 41 (1973), 609-614.
doi: 10.1090/S0002-9939-1973-0328707-9.![]() ![]() ![]() |